000167797 001__ 167797
000167797 005__ 20240229133549.0
000167797 0247_ $$2doi$$a10.1016/j.isci.2021.102128
000167797 0247_ $$2pmid$$apmid:33659885
000167797 0247_ $$2pmc$$apmc:PMC7895756
000167797 0247_ $$2altmetric$$aaltmetric:99191003
000167797 037__ $$aDKFZ-2021-00559
000167797 041__ $$aEnglish
000167797 082__ $$a050
000167797 1001_ $$aRuiz-Pérez, María Victoria$$b0
000167797 245__ $$aInhibition of fatty acid synthesis induces differentiation and reduces tumor burden in childhood neuroblastoma.
000167797 260__ $$aSt. Louis$$bElsevier$$c2021
000167797 3367_ $$2DRIVER$$aarticle
000167797 3367_ $$2DataCite$$aOutput Types/Journal article
000167797 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615279557_26330
000167797 3367_ $$2BibTeX$$aARTICLE
000167797 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000167797 3367_ $$00$$2EndNote$$aJournal Article
000167797 520__ $$aMany metabolic pathways, including lipid metabolism, are rewired in tumors to support energy and biomass production and to allow adaptation to stressful environments. Neuroblastoma is the second deadliest solid tumor in children. Genetic aberrations, as the amplification of the MYCN-oncogene, correlate strongly with disease progression. Yet, there are only a few molecular targets successfully exploited in the clinic. Here we show that inhibition of fatty acid synthesis led to increased neural differentiation and reduced tumor burden in neuroblastoma xenograft experiments independently of MYCN-status. This was accompanied by reduced levels of the MYCN or c-MYC oncoproteins and activation of ERK signaling. Importantly, the expression levels of genes involved in de novo fatty acid synthesis showed prognostic value for neuroblastoma patients. Our findings demonstrate that inhibition of de novo fatty acid synthesis is a promising pharmacological intervention strategy for the treatment of neuroblastoma independently of MYCN-status.
000167797 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000167797 588__ $$aDataset connected to CrossRef, PubMed,
000167797 650_7 $$2Other$$abiological sciences
000167797 650_7 $$2Other$$acancer
000167797 650_7 $$2Other$$acell biology
000167797 650_7 $$2Other$$amolecular biology
000167797 7001_ $$aSainero-Alcolado, Lourdes$$b1
000167797 7001_ $$aOliynyk, Ganna$$b2
000167797 7001_ $$aMatuschek, Isabell$$b3
000167797 7001_ $$aBalboni, Nicola$$b4
000167797 7001_ $$aUbhayasekera, S J Kumari A$$b5
000167797 7001_ $$0P:(DE-He78)7b7131e0870c28d432e48873d295460f$$aSnaebjornsson, Marteinn Thor$$b6$$udkfz
000167797 7001_ $$aMakowski, Kamil$$b7
000167797 7001_ $$aAaltonen, Kristina$$b8
000167797 7001_ $$aBexell, Daniel$$b9
000167797 7001_ $$aSerra, Dolors$$b10
000167797 7001_ $$aNilsson, Roland$$b11
000167797 7001_ $$aBergquist, Jonas$$b12
000167797 7001_ $$0P:(DE-He78)94ae391f53fb9285e1b68f9930615af1$$aSchulze, Almut$$b13$$udkfz
000167797 7001_ $$aArsenian-Henriksson, Marie$$b14
000167797 773__ $$0PERI:(DE-600)2927064-9$$a10.1016/j.isci.2021.102128$$gVol. 24, no. 2, p. 102128 -$$n2$$p102128$$tiScience$$v24$$x2589-0042$$y2021
000167797 909CO $$ooai:inrepo02.dkfz.de:167797$$pVDB
000167797 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7b7131e0870c28d432e48873d295460f$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000167797 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)94ae391f53fb9285e1b68f9930615af1$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000167797 9130_ $$0G:(DE-HGF)POF3-311$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vSignalling pathways, cell and tumor biology$$x0
000167797 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000167797 9141_ $$y2021
000167797 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-31
000167797 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-31
000167797 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-31
000167797 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-31
000167797 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-31
000167797 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-08-31
000167797 915__ $$0LIC:(DE-HGF)CCBYNCNDNV$$2V:(DE-HGF)$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)$$bDOAJ$$d2020-08-31
000167797 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-31
000167797 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-31
000167797 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-31
000167797 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-31
000167797 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-31
000167797 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-31
000167797 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-31
000167797 9201_ $$0I:(DE-He78)A410-20160331$$kA410$$lTumor Metabolismus und Microenvironment$$x0
000167797 980__ $$ajournal
000167797 980__ $$aVDB
000167797 980__ $$aI:(DE-He78)A410-20160331
000167797 980__ $$aUNRESTRICTED