000167820 001__ 167820
000167820 005__ 20240229133549.0
000167820 0247_ $$2doi$$a10.1016/j.dnarep.2021.103079
000167820 0247_ $$2pmid$$apmid:33676360
000167820 0247_ $$2ISSN$$a1568-7856
000167820 0247_ $$2ISSN$$a1568-7864
000167820 037__ $$aDKFZ-2021-00564
000167820 041__ $$aEnglish
000167820 082__ $$a570
000167820 1001_ $$0P:(DE-He78)0681b959321f574e7ad1869cc3011346$$aNiazi, Yasmeen$$b0$$eFirst author
000167820 245__ $$aDNA repair gene polymorphisms and chromosomal aberrations in healthy, nonsmoking population.
000167820 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000167820 3367_ $$2DRIVER$$aarticle
000167820 3367_ $$2DataCite$$aOutput Types/Journal article
000167820 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641391549_13754
000167820 3367_ $$2BibTeX$$aARTICLE
000167820 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000167820 3367_ $$00$$2EndNote$$aJournal Article
000167820 500__ $$a#EA:C050#LA:C020#
000167820 520__ $$aNonspecific structural chromosomal aberrations (CAs) can be found at around 1% of circulating lymphocytes from healthy individuals but the frequency may be higher after exposure to carcinogenic chemicals or radiation. The frequency of CAs has been measured in occupational monitoring and an increased frequency of CAs has also been associated with cancer risk. Alterations in DNA damage repair and telomere maintenance are thought to contribute to the formation of CAs, which include chromosome type of aberrations and chromatid type of aberrations. In the present study, we used the result of our published genome-wide association studies to extract data on 153 DNA repair genes from 866 nonsmoking persons who had no known occupational exposure to genotoxic substances. Considering an arbitrary cut-off level of P< 5 × 10-3, single nucleotide polymorphisms (SNPs) tagging 22 DNA repair genes were significantly associated with CAs and they remained significant at P < 0.05 when adjustment for multiple comparisons was done by the Binomial Sequential Goodness of Fit test. Nucleotide excision repair pathway genes showed most associations with 6 genes. Among the associated genes were several in which mutations manifest CA phenotype, including Fanconi anemia, WRN, BLM and genes that are important in maintaining genome stability, as well as PARP2 and mismatch repair genes. RPA2 and RPA3 may participate in telomere maintenance through the synthesis of the C strand of telomeres. Errors in NHEJ1 function may lead to translocations. The present results show associations with some genes with known CA phenotype and suggest other pathways with mechanistic rationale for the formation of CAs in healthy nonsmoking population.
000167820 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000167820 588__ $$aDataset connected to CrossRef, PubMed,
000167820 650_7 $$2Other$$aAssociation study
000167820 650_7 $$2Other$$aChromosomal aberrations
000167820 650_7 $$2Other$$aDNA repair
000167820 650_7 $$2Other$$aDouble-strand breaks
000167820 7001_ $$0P:(DE-HGF)0$$aThomsen, Hauke$$b1
000167820 7001_ $$aSmolkova, Bozena$$b2
000167820 7001_ $$aVodickova, Ludmila$$b3
000167820 7001_ $$aVodenkova, Soňa$$b4
000167820 7001_ $$aKroupa, Michal$$b5
000167820 7001_ $$aVymetalkova, Veronika$$b6
000167820 7001_ $$aKazimirova, Alena$$b7
000167820 7001_ $$aBarancokova, Magdalena$$b8
000167820 7001_ $$aVolkovova, Katarina$$b9
000167820 7001_ $$aStaruchova, Marta$$b10
000167820 7001_ $$aHoffmann, Per$$b11
000167820 7001_ $$aNöthen, Markus M$$b12
000167820 7001_ $$aDusinska, Maria$$b13
000167820 7001_ $$aMusak, Ludovit$$b14
000167820 7001_ $$aVodicka, Pavel$$b15
000167820 7001_ $$0P:(DE-He78)f26164c08f2f14abcf31e52e13ee3696$$aFörsti, Asta$$b16
000167820 7001_ $$0P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865$$aHemminki, Kari$$b17$$eLast author
000167820 773__ $$0PERI:(DE-600)2082770-2$$a10.1016/j.dnarep.2021.103079$$gVol. 101, p. 103079 -$$p103079 $$tDNA repair$$v101$$x1568-7864$$y2021
000167820 909CO $$ooai:inrepo02.dkfz.de:167820$$pVDB
000167820 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0681b959321f574e7ad1869cc3011346$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000167820 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000167820 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f26164c08f2f14abcf31e52e13ee3696$$aDeutsches Krebsforschungszentrum$$b16$$kDKFZ
000167820 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865$$aDeutsches Krebsforschungszentrum$$b17$$kDKFZ
000167820 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000167820 9130_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000167820 9141_ $$y2021
000167820 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000167820 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000167820 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000167820 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-30
000167820 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000167820 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-30
000167820 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000167820 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000167820 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000167820 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDNA REPAIR : 2019$$d2021-01-30
000167820 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000167820 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000167820 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000167820 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000167820 9201_ $$0I:(DE-He78)C050-20160331$$kC050$$lMolekular-Genetische Epidemiologie$$x0
000167820 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000167820 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x2
000167820 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x3
000167820 980__ $$ajournal
000167820 980__ $$aVDB
000167820 980__ $$aI:(DE-He78)C050-20160331
000167820 980__ $$aI:(DE-He78)HD01-20160331
000167820 980__ $$aI:(DE-He78)B062-20160331
000167820 980__ $$aI:(DE-He78)C020-20160331
000167820 980__ $$aUNRESTRICTED