000167835 001__ 167835
000167835 005__ 20240229133550.0
000167835 0247_ $$2doi$$a10.3390/metabo11020119
000167835 0247_ $$2pmid$$apmid:33669644
000167835 0247_ $$2altmetric$$aaltmetric:101436333
000167835 037__ $$aDKFZ-2021-00579
000167835 041__ $$aEnglish
000167835 082__ $$a540
000167835 1001_ $$00000-0001-9319-5350$$aGumpenberger, Tanja$$b0
000167835 245__ $$aUntargeted Metabolomics Reveals Major Differences in the Plasma Metabolome between Colorectal Cancer and Colorectal Adenomas.
000167835 260__ $$aBasel$$bMDPI$$c2021
000167835 3367_ $$2DRIVER$$aarticle
000167835 3367_ $$2DataCite$$aOutput Types/Journal article
000167835 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615296587_24578
000167835 3367_ $$2BibTeX$$aARTICLE
000167835 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000167835 3367_ $$00$$2EndNote$$aJournal Article
000167835 520__ $$aSporadic colorectal cancer is characterized by a multistep progression from normal epithelium to precancerous low-risk and high-risk adenomas to invasive cancer. Yet, the underlying molecular mechanisms of colorectal carcinogenesis are not completely understood. Within the 'Metabolomic profiles throughout the continuum of colorectal cancer' (MetaboCCC) consortium we analyzed data generated by untargeted, mass spectrometry-based metabolomics using plasma from 88 colorectal cancer patients, 200 patients with high-risk adenomas and 200 patients with low-risk adenomas recruited within the 'Colorectal Cancer Study of Austria' (CORSA). Univariate logistic regression models comparing colorectal cancer to adenomas resulted in 442 statistically significant molecular features. Metabolites discriminating colorectal cancer patients from those with adenomas in our dataset included acylcarnitines, caffeine, amino acids, glycerophospholipids, fatty acids, bilirubin, bile acids and bacterial metabolites of tryptophan. The data obtained discovers metabolite profiles reflecting metabolic differences between colorectal cancer and colorectal adenomas and delineates a potentially underlying biological interpretation.
000167835 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000167835 588__ $$aDataset connected to CrossRef, PubMed,
000167835 650_7 $$2Other$$aadenoma
000167835 650_7 $$2Other$$acolorectal cancer
000167835 650_7 $$2Other$$ametabolite profiling
000167835 650_7 $$2Other$$auntargeted metabolomics
000167835 7001_ $$00000-0001-5238-6900$$aBrezina, Stefanie$$b1
000167835 7001_ $$aKeski-Rahkonen, Pekka$$b2
000167835 7001_ $$00000-0002-5329-9507$$aBaierl, Andreas$$b3
000167835 7001_ $$aRobinot, Nivonirina$$b4
000167835 7001_ $$aLeeb, Gernot$$b5
000167835 7001_ $$0P:(DE-HGF)0$$aHabermann, Nina$$b6
000167835 7001_ $$00000-0001-7154-8207$$aKok, Dieuwertje E G$$b7
000167835 7001_ $$00000-0001-6651-6710$$aScalbert, Augustin$$b8
000167835 7001_ $$aUeland, Per-Magne$$b9
000167835 7001_ $$00000-0001-7641-059X$$aUlrich, Cornelia M$$b10
000167835 7001_ $$00000-0002-9795-1528$$aGsur, Andrea$$b11
000167835 773__ $$0PERI:(DE-600)2662251-8$$a10.3390/metabo11020119$$gVol. 11, no. 2, p. 119 -$$n2$$p119$$tMetabolites$$v11$$x2218-1989$$y2021
000167835 909CO $$ooai:inrepo02.dkfz.de:167835$$pVDB
000167835 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000167835 9130_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000167835 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000167835 9141_ $$y2021
000167835 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETABOLITES : 2018$$d2020-08-25
000167835 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-25
000167835 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-25
000167835 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-25
000167835 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-25
000167835 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-25
000167835 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-08-25
000167835 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-08-25
000167835 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-25
000167835 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-25
000167835 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-25
000167835 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-25
000167835 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-25
000167835 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-25
000167835 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-25
000167835 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-25
000167835 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-25
000167835 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x0
000167835 980__ $$ajournal
000167835 980__ $$aVDB
000167835 980__ $$aI:(DE-He78)C120-20160331
000167835 980__ $$aUNRESTRICTED