001     167835
005     20240229133550.0
024 7 _ |a 10.3390/metabo11020119
|2 doi
024 7 _ |a pmid:33669644
|2 pmid
024 7 _ |a altmetric:101436333
|2 altmetric
037 _ _ |a DKFZ-2021-00579
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Gumpenberger, Tanja
|0 0000-0001-9319-5350
|b 0
245 _ _ |a Untargeted Metabolomics Reveals Major Differences in the Plasma Metabolome between Colorectal Cancer and Colorectal Adenomas.
260 _ _ |a Basel
|c 2021
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615296587_24578
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Sporadic colorectal cancer is characterized by a multistep progression from normal epithelium to precancerous low-risk and high-risk adenomas to invasive cancer. Yet, the underlying molecular mechanisms of colorectal carcinogenesis are not completely understood. Within the 'Metabolomic profiles throughout the continuum of colorectal cancer' (MetaboCCC) consortium we analyzed data generated by untargeted, mass spectrometry-based metabolomics using plasma from 88 colorectal cancer patients, 200 patients with high-risk adenomas and 200 patients with low-risk adenomas recruited within the 'Colorectal Cancer Study of Austria' (CORSA). Univariate logistic regression models comparing colorectal cancer to adenomas resulted in 442 statistically significant molecular features. Metabolites discriminating colorectal cancer patients from those with adenomas in our dataset included acylcarnitines, caffeine, amino acids, glycerophospholipids, fatty acids, bilirubin, bile acids and bacterial metabolites of tryptophan. The data obtained discovers metabolite profiles reflecting metabolic differences between colorectal cancer and colorectal adenomas and delineates a potentially underlying biological interpretation.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a adenoma
|2 Other
650 _ 7 |a colorectal cancer
|2 Other
650 _ 7 |a metabolite profiling
|2 Other
650 _ 7 |a untargeted metabolomics
|2 Other
700 1 _ |a Brezina, Stefanie
|0 0000-0001-5238-6900
|b 1
700 1 _ |a Keski-Rahkonen, Pekka
|b 2
700 1 _ |a Baierl, Andreas
|0 0000-0002-5329-9507
|b 3
700 1 _ |a Robinot, Nivonirina
|b 4
700 1 _ |a Leeb, Gernot
|b 5
700 1 _ |a Habermann, Nina
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kok, Dieuwertje E G
|0 0000-0001-7154-8207
|b 7
700 1 _ |a Scalbert, Augustin
|0 0000-0001-6651-6710
|b 8
700 1 _ |a Ueland, Per-Magne
|b 9
700 1 _ |a Ulrich, Cornelia M
|0 0000-0001-7641-059X
|b 10
700 1 _ |a Gsur, Andrea
|0 0000-0002-9795-1528
|b 11
773 _ _ |a 10.3390/metabo11020119
|g Vol. 11, no. 2, p. 119 -
|0 PERI:(DE-600)2662251-8
|n 2
|p 119
|t Metabolites
|v 11
|y 2021
|x 2218-1989
909 C O |o oai:inrepo02.dkfz.de:167835
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-HGF)0
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b METABOLITES : 2018
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-08-25
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-25
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-25
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21