000167869 001__ 167869
000167869 005__ 20240229133552.0
000167869 0247_ $$2doi$$a10.3389/fendo.2021.600682
000167869 0247_ $$2pmid$$apmid:33692755
000167869 0247_ $$2pmc$$apmc:PMC7937922
000167869 0247_ $$2altmetric$$aaltmetric:100859592
000167869 037__ $$aDKFZ-2021-00603
000167869 041__ $$aEnglish
000167869 082__ $$a610
000167869 1001_ $$0P:(DE-He78)43b43c5f20ed70299251a446ad8ec973$$aSrivastava, Aayushi$$b0$$eFirst author$$udkfz
000167869 245__ $$aWhole Genome Sequencing Prioritizes CHEK2, EWSR1, and TIAM1 as Possible Predisposition Genes for Familial Non-Medullary Thyroid Cancer.
000167869 260__ $$aLausanne$$bFrontiers Research Foundation$$c2021
000167869 3367_ $$2DRIVER$$aarticle
000167869 3367_ $$2DataCite$$aOutput Types/Journal article
000167869 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1616511869_6687
000167869 3367_ $$2BibTeX$$aARTICLE
000167869 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000167869 3367_ $$00$$2EndNote$$aJournal Article
000167869 500__ $$a#EA:B062#LA:B062#
000167869 520__ $$aFamilial inheritance in non-medullary thyroid cancer (NMTC) is an area that has yet to be adequately explored. Despite evidence suggesting strong familial clustering of non-syndromic NMTC, known variants still account for a very small percentage of the genetic burden. In a recent whole genome sequencing (WGS) study of five families with several NMTCs, we shortlisted promising variants with the help of our in-house developed Familial Cancer Variant Prioritization Pipeline (FCVPPv2). Here, we report potentially disease-causing variants in checkpoint kinase 2 (CHEK2), Ewing sarcoma breakpoint region 1 (EWSR1) and T-lymphoma invasion and metastasis-inducing protein 1 (TIAM1) in one family. Performing WGS on three cases, one probable case and one healthy individual in a family with familial NMTC left us with 112254 variants with a minor allele frequency of less than 0.1%, which was reduced by pedigree-based filtering to 6368. Application of the pipeline led to the prioritization of seven coding and nine non-coding variants from this family. The variant identified in CHEK2, a known tumor suppressor gene involved in DNA damage-induced DNA repair, cell cycle arrest, and apoptosis, has been previously identified as a germline variant in breast and prostate cancer and has been functionally validated by Roeb et al. in a yeast-based assay to have an intermediate effect on protein function. We thus hypothesized that this family may harbor additional disease-causing variants in other functionally related genes. We evaluated two further variants in EWSR1 and TIAM1 with promising in silico results and reported interaction in the DNA-damage repair pathway. Hence, we propose a polygenic mode of inheritance in this family. As familial NMTC is considered to be more aggressive than its sporadic counterpart, it is important to identify such susceptibility genes and their associated pathways. In this way, the advancement of personalized medicine in NMTC patients can be fostered. We also wish to reopen the discussion on monogenic vs polygenic inheritance in NMTC and instigate further development in this area of research.
000167869 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000167869 588__ $$aDataset connected to CrossRef, PubMed,
000167869 650_7 $$2Other$$aCHEK2
000167869 650_7 $$2Other$$aEWSR1
000167869 650_7 $$2Other$$aTIAM1
000167869 650_7 $$2Other$$afamilial non-medullary thyroid cancer
000167869 650_7 $$2Other$$agermline variant
000167869 650_7 $$2Other$$anon-syndromic
000167869 650_7 $$2Other$$awhole-genome sequencing
000167869 7001_ $$0P:(DE-He78)f18e077aae13edd9d0d8b911cfcd8e0f$$aGiangiobbe, Sara$$b1
000167869 7001_ $$0P:(DE-He78)cea283034a4f6c64994f85d4444e7494$$aSkopelitou, Diamanto$$b2$$udkfz
000167869 7001_ $$0P:(DE-He78)b5b786a7a28d851956ba90aa9451887a$$aMiao, Beiping$$b3$$udkfz
000167869 7001_ $$aParamasivam, Nagarajan$$b4
000167869 7001_ $$aDiquigiovanni, Chiara$$b5
000167869 7001_ $$aBonora, Elena$$b6
000167869 7001_ $$0P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865$$aHemminki, Kari$$b7$$udkfz
000167869 7001_ $$0P:(DE-He78)f26164c08f2f14abcf31e52e13ee3696$$aFörsti, Asta$$b8$$udkfz
000167869 7001_ $$0P:(DE-He78)b11ccde1801d45d32a6a60f7b396d7dc$$aBandapalli, Obul Reddy$$b9$$eLast author$$udkfz
000167869 773__ $$0PERI:(DE-600)2592084-4$$a10.3389/fendo.2021.600682$$gVol. 12, p. 600682$$p600682$$tFrontiers in endocrinology$$v12$$x1664-2392$$y2021
000167869 909CO $$ooai:inrepo02.dkfz.de:167869$$pVDB
000167869 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)43b43c5f20ed70299251a446ad8ec973$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000167869 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f18e077aae13edd9d0d8b911cfcd8e0f$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000167869 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)cea283034a4f6c64994f85d4444e7494$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000167869 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b5b786a7a28d851956ba90aa9451887a$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000167869 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000167869 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f26164c08f2f14abcf31e52e13ee3696$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000167869 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b11ccde1801d45d32a6a60f7b396d7dc$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000167869 9130_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000167869 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000167869 9141_ $$y2021
000167869 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT ENDOCRINOL : 2019$$d2021-02-02
000167869 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000167869 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000167869 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-02
000167869 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000167869 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000167869 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-02-02
000167869 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-02
000167869 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000167869 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000167869 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-02
000167869 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000167869 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000167869 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000167869 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000167869 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000167869 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000167869 9201_ $$0I:(DE-He78)C050-20160331$$kC050$$lMolekular-Genetische Epidemiologie$$x0
000167869 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x1
000167869 980__ $$ajournal
000167869 980__ $$aVDB
000167869 980__ $$aI:(DE-He78)C050-20160331
000167869 980__ $$aI:(DE-He78)B062-20160331
000167869 980__ $$aUNRESTRICTED