001     167949
005     20240229133556.0
024 7 _ |a 10.3324/haematol.2020.251561
|2 doi
024 7 _ |a pmid:33730841
|2 pmid
024 7 _ |a 0390-6078
|2 ISSN
024 7 _ |a 1592-8721
|2 ISSN
024 7 _ |a altmetric:102004041
|2 altmetric
037 _ _ |a DKFZ-2021-00660
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Bloehdorn, Johannes
|b 0
245 _ _ |a Integrative prognostic models predict long-term survival after immunochemotherapy in chronic lymphocytic leukemia patients.
260 _ _ |a Pavia
|c 2022
|b Ferrata Storti Foundation64433
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1678888090_29492
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2022Volume 107(3):615-624 / #LA:C060#
520 _ _ |a Chemoimmunotherapy with fludarabine, cyclophosphamide and rituximab can induce longterm remissions in patients with chronic lymphocytic leukemia. Treatment efficacy with Bruton's tyrosine kinase inhibitors was found similar to fludarabine, cyclophosphamide and rituximab in untreated chronic lymphocytic leukemia patients with a mutated immunoglobulin heavy chain variable gene. To identify patients who specifically benefit from fludarabine, cyclophosphamide and rituximab, we developed integrative models including established prognostic parameters and gene expression profiling. Gene expression profiling was conducted on n=337 CLL8 trial samples, 'core' probe sets were summarized on gene levels and RMA normalized. Prognostic models were built using penalized Cox proportional hazards models with the smoothly clipped absolute deviation penalty. We identified a prognostic signature of less than a dozen genes, which substituted for established prognostic factors, including TP53 and immunoglobulin heavy chain variable gene mutation status. Independent prognostic impact was confirmed for treatment, β2-microglobulin and del(17p) regarding overall survival and for treatment, del(11q), del(17p) and SF3B1 mutation for progression-free survival. The combination of independent prognostic and gene expression profiling variables performed equal to models including only established non-gene expression profiling variables. Gene expression profiling variables showed higher prognostic accuracy for patients with long progression-free survival compared to categorical variables like the immunoglobulin heavy chain variable gene mutation status and reliably predicted overall survival in CLL8 and an independent cohort. Gene expression profiling based prognostic models can help to identify patients who specifically benefit from fludarabine, cyclophosphamide and rituximab treatment. The CLL8 trial is registered under EUDRACT- 2004-004938-14 and ClinicalTrials.gov Identifier NCT00281918.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Krzykalla, Julia
|0 P:(DE-He78)5a7a75d1b29b770f98f1bb2062fc3df9
|b 1
700 1 _ |a Holzmann, Karlheinz
|b 2
700 1 _ |a Gerhardinger, Andreas
|b 3
700 1 _ |a Jebaraj, Billy Michael Chelliah
|b 4
700 1 _ |a Bahlo, Jasmin
|b 5
700 1 _ |a Humphrey, Kathryn
|b 6
700 1 _ |a Tausch, Eugen
|b 7
700 1 _ |a Robrecht, Sandra
|b 8
700 1 _ |a Mertens, Daniel
|0 P:(DE-He78)833c06a995d272b78f3a20df3eba6e9e
|b 9
700 1 _ |a Schneider, Christof
|b 10
700 1 _ |a Fischer, Kirsten
|b 11
700 1 _ |a Hallek, Michael
|b 12
700 1 _ |a Döhner, Hartmut
|b 13
700 1 _ |a Benner, Axel
|0 P:(DE-He78)e15dfa1260625c69d6690a197392a994
|b 14
|e Last author
700 1 _ |a Stilgenbauer, Stephan
|b 15
773 _ _ |a 10.3324/haematol.2020.251561
|0 PERI:(DE-600)2805244-4
|n 3
|p 615-624
|t Haematologica
|v 107
|y 2022
|x 1592-8721
909 C O |p VDB
|o oai:inrepo02.dkfz.de:167949
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)5a7a75d1b29b770f98f1bb2062fc3df9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)833c06a995d272b78f3a20df3eba6e9e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)e15dfa1260625c69d6690a197392a994
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-319H
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Addenda
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-26
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-26
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-11T15:43:53Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-11T15:43:53Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-08-11T15:43:53Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-23
920 2 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)B061-20160331
|k B061
|l B061 Mechanismen der Leukämogenese
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)B061-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21