001     168129
005     20240229133558.0
024 7 _ |a 10.1093/ije/dyab036
|2 doi
024 7 _ |a pmid:33755131
|2 pmid
024 7 _ |a 0300-5771
|2 ISSN
024 7 _ |a 1464-3685
|2 ISSN
024 7 _ |a altmetric:102669986
|2 altmetric
037 _ _ |a DKFZ-2021-00697
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Hurson, Amber N
|b 0
245 _ _ |a Prospective evaluation of a breast-cancer risk model integrating classical risk factors and polygenic risk in 15 cohorts from six countries.
260 _ _ |a Oxford
|c 2021
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642519336_16197
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Volume 50, Issue 6, December 2021, Pages 1897–1911
520 _ _ |a Rigorous evaluation of the calibration and discrimination of breast-cancer risk-prediction models in prospective cohorts is critical for applications under clinical guidelines. We comprehensively evaluated an integrated model incorporating classical risk factors and a 313-variant polygenic risk score (PRS) to predict breast-cancer risk.Fifteen prospective cohorts from six countries with 239 340 women (7646 incident breast-cancer cases) of European ancestry aged 19-75 years were included. Calibration of 5-year risk was assessed by comparing expected and observed proportions of cases overall and within risk categories. Risk stratification for women of European ancestry aged 50-70 years in those countries was evaluated by the proportion of women and future cases crossing clinically relevant risk thresholds.Among women <50 years old, the median (range) expected-to-observed ratio for the integrated model across 15 cohorts was 0.9 (0.7-1.0) overall and 0.9 (0.7-1.4) at the highest-risk decile; among women ≥50 years old, these were 1.0 (0.7-1.3) and 1.2 (0.7-1.6), respectively. The proportion of women identified above a 3% 5-year risk threshold (used for recommending risk-reducing medications in the USA) ranged from 7.0% in Germany (∼841 000 of 12 million) to 17.7% in the USA (∼5.3 of 30 million). At this threshold, 14.7% of US women were reclassified by adding the PRS to classical risk factors, with identification of 12.2% of additional future cases.Integrating a 313-variant PRS with classical risk factors can improve the identification of European-ancestry women at elevated risk who could benefit from targeted risk-reducing strategies under current clinical guidelines.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Breast cancer
|2 Other
650 _ 7 |a iCARE
|2 Other
650 _ 7 |a model validation
|2 Other
650 _ 7 |a polygenic risk score
|2 Other
650 _ 7 |a risk prediction
|2 Other
650 _ 7 |a risk stratification
|2 Other
700 1 _ |a Pal Choudhury, Parichoy
|b 1
700 1 _ |a Gao, Chi
|b 2
700 1 _ |a Hüsing, Anika
|0 P:(DE-He78)6519c85d61a3def7974665471b8a4f74
|b 3
700 1 _ |a Eriksson, Mikael
|b 4
700 1 _ |a Shi, Min
|b 5
700 1 _ |a Jones, Michael E
|b 6
700 1 _ |a Evans, D Gareth R
|b 7
700 1 _ |a Milne, Roger L
|b 8
700 1 _ |a Gaudet, Mia M
|b 9
700 1 _ |a Vachon, Celine M
|b 10
700 1 _ |a Chasman, Daniel I
|b 11
700 1 _ |a Easton, Douglas F
|b 12
700 1 _ |a Schmidt, Marjanka K
|b 13
700 1 _ |a Kraft, Peter
|b 14
700 1 _ |a Garcia-Closas, Montserrat
|b 15
700 1 _ |a Chatterjee, Nilanjan
|b 16
700 1 _ |a Group, B-CAST Risk Modelling
|b 17
|e Collaboration Author
773 _ _ |a 10.1093/ije/dyab036
|g p. dyab036
|0 PERI:(DE-600)1494592-7
|n 6
|p 1897–1911
|t International journal of epidemiology
|v 50
|y 2021
|x 1464-3685
909 C O |p VDB
|o oai:inrepo02.dkfz.de:168129
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)6519c85d61a3def7974665471b8a4f74
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-04
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J EPIDEMIOL : 2019
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-04
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J EPIDEMIOL : 2019
|d 2021-02-04
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21