000168148 001__ 168148
000168148 005__ 20240229133559.0
000168148 0247_ $$2doi$$a10.1016/j.neuroimage.2021.117986
000168148 0247_ $$2pmid$$apmid:33757906
000168148 0247_ $$2ISSN$$a1053-8119
000168148 0247_ $$2ISSN$$a1095-9572
000168148 0247_ $$2altmetric$$aaltmetric:102208008
000168148 037__ $$aDKFZ-2021-00713
000168148 041__ $$aEnglish
000168148 082__ $$a610
000168148 1001_ $$aGerman, Alexander$$b0
000168148 245__ $$aBrain tissues have single-voxel signatures in multi-spectral MRI.
000168148 260__ $$aOrlando, Fla.$$bAcademic Press$$c2021
000168148 3367_ $$2DRIVER$$aarticle
000168148 3367_ $$2DataCite$$aOutput Types/Journal article
000168148 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619617796_10522
000168148 3367_ $$2BibTeX$$aARTICLE
000168148 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000168148 3367_ $$00$$2EndNote$$aJournal Article
000168148 500__ $$aVolume 234, 1 July 2021, 117986
000168148 520__ $$aSince the seminal works by Brodmann and contemporaries, it is well-known that different brain regions exhibit unique cytoarchitectonic and myeloarchitectonic features. Transferring the approach of classifying brain tissues - and other tissues - based on their intrinsic features to the realm of magnetic resonance (MR) is a longstanding endeavor. In the 1990s, atlas-based segmentation replaced earlier multi-spectral classification approaches because of the large overlap between the class distributions. Here, we explored the feasibility of performing global brain classification based on intrinsic MR features, and used several technological advances: Ultra-high field MRI, q-space trajectory diffusion imaging revealing voxel-intrinsic diffusion properties, chemical exchange saturation transfer and semi-solid magnetization transfer imaging as a marker of myelination and neurochemistry, and current neural network architectures to analyze the data. In particular, we used the raw image data as well to increase the number of input features. We found that a global brain classification of roughly 97 brain regions was feasible with gross classification accuracy of 60%; and that mapping from voxel-intrinsic MR data to the brain region to which the data belongs is possible. This indicates the presence of unique MR signals of different brain regions, similar to their cytoarchitectonic and myeloarchitectonic fingerprints.
000168148 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000168148 588__ $$aDataset connected to CrossRef, PubMed,
000168148 7001_ $$aMennecke, Angelika$$b1
000168148 7001_ $$aMartin, Jan$$b2
000168148 7001_ $$aHanspach, Jannis$$b3
000168148 7001_ $$aLiebert, Andrzej$$b4
000168148 7001_ $$aHerrler, Jürgen$$b5
000168148 7001_ $$0P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aKuder, Tristan Anselm$$b6$$udkfz
000168148 7001_ $$aSchmidt, Manuel$$b7
000168148 7001_ $$aNagel, Armin$$b8
000168148 7001_ $$aUder, Michael$$b9
000168148 7001_ $$aDoerfler, Arnd$$b10
000168148 7001_ $$aWinkler, Jürgen$$b11
000168148 7001_ $$aZaiss, Moritz$$b12
000168148 7001_ $$aLaun, Frederik Bernd$$b13
000168148 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2021.117986$$gp. 117986 -$$p117986$$tNeuroImage$$v234$$x1053-8119$$y2021
000168148 909CO $$ooai:inrepo02.dkfz.de:168148$$pVDB
000168148 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000168148 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000168148 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000168148 9141_ $$y2021
000168148 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000168148 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000168148 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000168148 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-29
000168148 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-29
000168148 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-29
000168148 915__ $$0LIC:(DE-HGF)CCBYNCNDNV$$2V:(DE-HGF)$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)$$bDOAJ$$d2021-01-29
000168148 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000168148 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-29
000168148 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000168148 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-29
000168148 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000168148 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000168148 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000168148 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2019$$d2021-01-29
000168148 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000168148 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000168148 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2019$$d2021-01-29
000168148 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000168148 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000168148 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29
000168148 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000168148 980__ $$ajournal
000168148 980__ $$aVDB
000168148 980__ $$aI:(DE-He78)E020-20160331
000168148 980__ $$aUNRESTRICTED