001     168148
005     20240229133559.0
024 7 _ |a 10.1016/j.neuroimage.2021.117986
|2 doi
024 7 _ |a pmid:33757906
|2 pmid
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a altmetric:102208008
|2 altmetric
037 _ _ |a DKFZ-2021-00713
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a German, Alexander
|b 0
245 _ _ |a Brain tissues have single-voxel signatures in multi-spectral MRI.
260 _ _ |a Orlando, Fla.
|c 2021
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1619617796_10522
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Volume 234, 1 July 2021, 117986
520 _ _ |a Since the seminal works by Brodmann and contemporaries, it is well-known that different brain regions exhibit unique cytoarchitectonic and myeloarchitectonic features. Transferring the approach of classifying brain tissues - and other tissues - based on their intrinsic features to the realm of magnetic resonance (MR) is a longstanding endeavor. In the 1990s, atlas-based segmentation replaced earlier multi-spectral classification approaches because of the large overlap between the class distributions. Here, we explored the feasibility of performing global brain classification based on intrinsic MR features, and used several technological advances: Ultra-high field MRI, q-space trajectory diffusion imaging revealing voxel-intrinsic diffusion properties, chemical exchange saturation transfer and semi-solid magnetization transfer imaging as a marker of myelination and neurochemistry, and current neural network architectures to analyze the data. In particular, we used the raw image data as well to increase the number of input features. We found that a global brain classification of roughly 97 brain regions was feasible with gross classification accuracy of 60%; and that mapping from voxel-intrinsic MR data to the brain region to which the data belongs is possible. This indicates the presence of unique MR signals of different brain regions, similar to their cytoarchitectonic and myeloarchitectonic fingerprints.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Mennecke, Angelika
|b 1
700 1 _ |a Martin, Jan
|b 2
700 1 _ |a Hanspach, Jannis
|b 3
700 1 _ |a Liebert, Andrzej
|b 4
700 1 _ |a Herrler, Jürgen
|b 5
700 1 _ |a Kuder, Tristan Anselm
|0 P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6
|b 6
|u dkfz
700 1 _ |a Schmidt, Manuel
|b 7
700 1 _ |a Nagel, Armin
|b 8
700 1 _ |a Uder, Michael
|b 9
700 1 _ |a Doerfler, Arnd
|b 10
700 1 _ |a Winkler, Jürgen
|b 11
700 1 _ |a Zaiss, Moritz
|b 12
700 1 _ |a Laun, Frederik Bernd
|b 13
773 _ _ |a 10.1016/j.neuroimage.2021.117986
|g p. 117986 -
|0 PERI:(DE-600)1471418-8
|p 117986
|t NeuroImage
|v 234
|y 2021
|x 1053-8119
909 C O |o oai:inrepo02.dkfz.de:168148
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)
|0 LIC:(DE-HGF)CCBYNCNDNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2019
|d 2021-01-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-29
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21