TY - JOUR
AU - Kather, Jakob Nikolas
AU - Heij, Lara R
AU - Grabsch, Heike I
AU - Loeffler, Chiara
AU - Echle, Amelie
AU - Muti, Hannah Sophie
AU - Krause, Jeremias
AU - Niehues, Jan M
AU - Sommer, Kai A J
AU - Bankhead, Peter
AU - Kooreman, Loes F S
AU - Schulte, Jefree J
AU - Cipriani, Nicole A
AU - Buelow, Roman D
AU - Boor, Peter
AU - Ortiz-Brüchle, Nadi-Na
AU - Hanby, Andrew M
AU - Speirs, Valerie
AU - Kochanny, Sara
AU - Patnaik, Akash
AU - Srisuwananukorn, Andrew
AU - Brenner, Hermann
AU - Hoffmeister, Michael
AU - van den Brandt, Piet A
AU - Jäger, Dirk
AU - Trautwein, Christian
AU - Pearson, Alexander T
AU - Luedde, Tom
TI - Pan-cancer image-based detection of clinically actionable genetic alterations.
JO - Nature cancer
VL - 1
IS - 8
SN - 2662-1347
CY - London
PB - Nature Research
M1 - DKFZ-2021-00719
SP - 789 - 799
PY - 2020
AB - Molecular alterations in cancer can cause phenotypic changes in tumor cells and their micro-environment. Routine histopathology tissue slides - which are ubiquitously available - can reflect such morphological changes. Here, we show that deep learning can consistently infer a wide range of genetic mutations, molecular tumor subtypes, gene expression signatures and standard pathology biomarkers directly from routine histology. We developed, optimized, validated and publicly released a one-stop-shop workflow and applied it to tissue slides of more than 5000 patients across multiple solid tumors. Our findings show that a single deep learning algorithm can be trained to predict a wide range of molecular alterations from routine, paraffin-embedded histology slides stained with hematoxylin and eosin. These predictions generalize to other populations and are spatially resolved. Our method can be implemented on mobile hardware, potentially enabling point-of-care diagnostics for personalized cancer treatment. More generally, this approach could elucidate and quantify genotype-phenotype links in cancer.
LB - PUB:(DE-HGF)16
C6 - pmid:33763651
C2 - pmc:PMC7610412
DO - DOI:10.1038/s43018-020-0087-6
UR - https://inrepo02.dkfz.de/record/168179
ER -