Home > Publications database > Pan-cancer image-based detection of clinically actionable genetic alterations. > print |
001 | 168179 | ||
005 | 20240229123236.0 | ||
024 | 7 | _ | |a 10.1038/s43018-020-0087-6 |2 doi |
024 | 7 | _ | |a pmid:33763651 |2 pmid |
024 | 7 | _ | |a pmc:PMC7610412 |2 pmc |
024 | 7 | _ | |a altmetric:86607596 |2 altmetric |
037 | _ | _ | |a DKFZ-2021-00719 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Kather, Jakob Nikolas |0 P:(DE-He78)761f5d0f73e0d8f170394b29448a9e8d |b 0 |u dkfz |
245 | _ | _ | |a Pan-cancer image-based detection of clinically actionable genetic alterations. |
260 | _ | _ | |a London |c 2020 |b Nature Research |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1692365443_10946 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Molecular alterations in cancer can cause phenotypic changes in tumor cells and their micro-environment. Routine histopathology tissue slides - which are ubiquitously available - can reflect such morphological changes. Here, we show that deep learning can consistently infer a wide range of genetic mutations, molecular tumor subtypes, gene expression signatures and standard pathology biomarkers directly from routine histology. We developed, optimized, validated and publicly released a one-stop-shop workflow and applied it to tissue slides of more than 5000 patients across multiple solid tumors. Our findings show that a single deep learning algorithm can be trained to predict a wide range of molecular alterations from routine, paraffin-embedded histology slides stained with hematoxylin and eosin. These predictions generalize to other populations and are spatially resolved. Our method can be implemented on mobile hardware, potentially enabling point-of-care diagnostics for personalized cancer treatment. More generally, this approach could elucidate and quantify genotype-phenotype links in cancer. |
536 | _ | _ | |a 313 - Cancer risk factors and prevention (POF3-313) |0 G:(DE-HGF)POF3-313 |c POF3-313 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Heij, Lara R |b 1 |
700 | 1 | _ | |a Grabsch, Heike I |b 2 |
700 | 1 | _ | |a Loeffler, Chiara |b 3 |
700 | 1 | _ | |a Echle, Amelie |b 4 |
700 | 1 | _ | |a Muti, Hannah Sophie |b 5 |
700 | 1 | _ | |a Krause, Jeremias |b 6 |
700 | 1 | _ | |a Niehues, Jan M |b 7 |
700 | 1 | _ | |a Sommer, Kai A J |b 8 |
700 | 1 | _ | |a Bankhead, Peter |b 9 |
700 | 1 | _ | |a Kooreman, Loes F S |b 10 |
700 | 1 | _ | |a Schulte, Jefree J |b 11 |
700 | 1 | _ | |a Cipriani, Nicole A |b 12 |
700 | 1 | _ | |a Buelow, Roman D |b 13 |
700 | 1 | _ | |a Boor, Peter |b 14 |
700 | 1 | _ | |a Ortiz-Brüchle, Nadi-Na |b 15 |
700 | 1 | _ | |a Hanby, Andrew M |b 16 |
700 | 1 | _ | |a Speirs, Valerie |b 17 |
700 | 1 | _ | |a Kochanny, Sara |b 18 |
700 | 1 | _ | |a Patnaik, Akash |b 19 |
700 | 1 | _ | |a Srisuwananukorn, Andrew |b 20 |
700 | 1 | _ | |a Brenner, Hermann |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |b 21 |u dkfz |
700 | 1 | _ | |a Hoffmeister, Michael |0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |b 22 |u dkfz |
700 | 1 | _ | |a van den Brandt, Piet A |b 23 |
700 | 1 | _ | |a Jäger, Dirk |0 P:(DE-He78)ed0321409c9cde20b380ae663dbcefd1 |b 24 |u dkfz |
700 | 1 | _ | |a Trautwein, Christian |b 25 |
700 | 1 | _ | |a Pearson, Alexander T |b 26 |
700 | 1 | _ | |a Luedde, Tom |b 27 |
773 | _ | _ | |a 10.1038/s43018-020-0087-6 |g Vol. 1, no. 8, p. 789 - 799 |0 PERI:(DE-600)3005299-3 |n 8 |p 789 - 799 |t Nature cancer |v 1 |y 2020 |x 2662-1347 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:168179 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)761f5d0f73e0d8f170394b29448a9e8d |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 21 |6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 22 |6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 24 |6 P:(DE-He78)ed0321409c9cde20b380ae663dbcefd1 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-313 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Cancer risk factors and prevention |x 0 |
913 | 2 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-04 |
915 | _ | _ | |a DEAL Nature |0 StatID:(DE-HGF)3003 |2 StatID |d 2022-11-08 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT CANCER : 2021 |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-08 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-08 |
915 | _ | _ | |a IF >= 20 |0 StatID:(DE-HGF)9920 |2 StatID |b NAT CANCER : 2021 |d 2022-11-08 |
920 | 1 | _ | |0 I:(DE-He78)HD01-20160331 |k HD01 |l DKTK HD zentral |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 1 |
920 | 1 | _ | |0 I:(DE-He78)C120-20160331 |k C120 |l Präventive Onkologie |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)HD01-20160331 |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a I:(DE-He78)C120-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|