001     168179
005     20240229123236.0
024 7 _ |a 10.1038/s43018-020-0087-6
|2 doi
024 7 _ |a pmid:33763651
|2 pmid
024 7 _ |a pmc:PMC7610412
|2 pmc
024 7 _ |a altmetric:86607596
|2 altmetric
037 _ _ |a DKFZ-2021-00719
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kather, Jakob Nikolas
|0 P:(DE-He78)761f5d0f73e0d8f170394b29448a9e8d
|b 0
|u dkfz
245 _ _ |a Pan-cancer image-based detection of clinically actionable genetic alterations.
260 _ _ |a London
|c 2020
|b Nature Research
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1692365443_10946
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Molecular alterations in cancer can cause phenotypic changes in tumor cells and their micro-environment. Routine histopathology tissue slides - which are ubiquitously available - can reflect such morphological changes. Here, we show that deep learning can consistently infer a wide range of genetic mutations, molecular tumor subtypes, gene expression signatures and standard pathology biomarkers directly from routine histology. We developed, optimized, validated and publicly released a one-stop-shop workflow and applied it to tissue slides of more than 5000 patients across multiple solid tumors. Our findings show that a single deep learning algorithm can be trained to predict a wide range of molecular alterations from routine, paraffin-embedded histology slides stained with hematoxylin and eosin. These predictions generalize to other populations and are spatially resolved. Our method can be implemented on mobile hardware, potentially enabling point-of-care diagnostics for personalized cancer treatment. More generally, this approach could elucidate and quantify genotype-phenotype links in cancer.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Heij, Lara R
|b 1
700 1 _ |a Grabsch, Heike I
|b 2
700 1 _ |a Loeffler, Chiara
|b 3
700 1 _ |a Echle, Amelie
|b 4
700 1 _ |a Muti, Hannah Sophie
|b 5
700 1 _ |a Krause, Jeremias
|b 6
700 1 _ |a Niehues, Jan M
|b 7
700 1 _ |a Sommer, Kai A J
|b 8
700 1 _ |a Bankhead, Peter
|b 9
700 1 _ |a Kooreman, Loes F S
|b 10
700 1 _ |a Schulte, Jefree J
|b 11
700 1 _ |a Cipriani, Nicole A
|b 12
700 1 _ |a Buelow, Roman D
|b 13
700 1 _ |a Boor, Peter
|b 14
700 1 _ |a Ortiz-Brüchle, Nadi-Na
|b 15
700 1 _ |a Hanby, Andrew M
|b 16
700 1 _ |a Speirs, Valerie
|b 17
700 1 _ |a Kochanny, Sara
|b 18
700 1 _ |a Patnaik, Akash
|b 19
700 1 _ |a Srisuwananukorn, Andrew
|b 20
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 21
|u dkfz
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 22
|u dkfz
700 1 _ |a van den Brandt, Piet A
|b 23
700 1 _ |a Jäger, Dirk
|0 P:(DE-He78)ed0321409c9cde20b380ae663dbcefd1
|b 24
|u dkfz
700 1 _ |a Trautwein, Christian
|b 25
700 1 _ |a Pearson, Alexander T
|b 26
700 1 _ |a Luedde, Tom
|b 27
773 _ _ |a 10.1038/s43018-020-0087-6
|g Vol. 1, no. 8, p. 789 - 799
|0 PERI:(DE-600)3005299-3
|n 8
|p 789 - 799
|t Nature cancer
|v 1
|y 2020
|x 2662-1347
909 C O |p VDB
|o oai:inrepo02.dkfz.de:168179
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)761f5d0f73e0d8f170394b29448a9e8d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 21
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 22
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 24
|6 P:(DE-He78)ed0321409c9cde20b380ae663dbcefd1
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
913 2 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-04
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2022-11-08
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT CANCER : 2021
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-08
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-08
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b NAT CANCER : 2021
|d 2022-11-08
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 1
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21