000168186 001__ 168186 000168186 005__ 20240229133600.0 000168186 0247_ $$2doi$$a10.1523/ENEURO.0468-20.2021 000168186 0247_ $$2pmid$$apmid:33762301 000168186 0247_ $$2altmetric$$aaltmetric:102748484 000168186 037__ $$aDKFZ-2021-00726 000168186 041__ $$aEnglish 000168186 082__ $$a610 000168186 1001_ $$aAdachi, Toma$$b0 000168186 245__ $$aNotch Signaling between Cerebellar Granule Cell Progenitors. 000168186 260__ $$aWashington, DC$$bSoc.$$c2021 000168186 3367_ $$2DRIVER$$aarticle 000168186 3367_ $$2DataCite$$aOutput Types/Journal article 000168186 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625056944_11425 000168186 3367_ $$2BibTeX$$aARTICLE 000168186 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000168186 3367_ $$00$$2EndNote$$aJournal Article 000168186 500__ $$a2021 May 12;8(3):ENEURO.0468-20.2021 000168186 520__ $$aCerebellar granule cells (GCs) are cells which comprise over 50% of the neurons in the entire nervous system. GCs enable the cerebellum to properly regulate motor coordination, learning, and consolidation, in addition to cognition, emotion and language. During GC development, maternal GC progenitors (GCPs) divide to produce not only postmitotic GCs but also sister GCPs. However, the molecular machinery for regulating the proportional production of distinct sister cell types from seemingly uniform GCPs is not yet fully understood. Here we report that Notch signaling creates a distinction between GCPs and leads to their proportional differentiation in mice. Among Notch-related molecules, Notch1, Notch2, Jag1, and Hes1 are prominently expressed in GCPs. In vivo monitoring of Hes1-promoter activities showed the presence of two types of GCPs, Notch-signaling ON and OFF, in the external granule layer (EGL). Single-cell RNA sequencing (scRNA-seq) and in silico analyses indicate that ON-GCPs have more proliferative and immature properties, while OFF-GCPs have opposite characteristics. Overexpression as well as knock-down (KD) experiments using in vivo electroporation showed that NOTCH2 and HES1 are involved cell-autonomously to suppress GCP differentiation by inhibiting NEUROD1 expression. In contrast, JAG1-expressing cells non-autonomously upregulated Notch signaling activities via NOTCH2-HES1 in surrounding GCPs, eventually suppressing their differentiation. These findings suggest that Notch signaling results in the proportional generation of two types of cells, immature and differentiating GCPs, which contributes to the well-organized differentiation of GCs.Significance StatementThis study is the first to succeed in visualization of Notch signaling in vivo during cerebellar development. Granule cell progenitors (GCPs) in the outermost layer of the developing cerebellum are a seemingly homogenous cell population, but this study revealed two types of GCPs; more proliferative Notch-ON-GCPs and more differentiative Notch-OFF-GCPs, the latter of which gradually give rise to postmitotic GCs. Our experiments suggest that NOTCH2 and HES1 are involved cell-autonomously to suppress GCP differentiation by inhibiting NEUROD1 expression. In contrast, JAG1-expressing cells non-autonomously upregulated Notch signaling activities via NOTCH2-HES1 in surrounding GCPs, suppressing their differentiation. This study gives new insights into the mechanisms controlling the differences within homogenous cell populations that direct proper and coordinated cell differentiation. 000168186 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0 000168186 588__ $$aDataset connected to CrossRef, PubMed, 000168186 650_7 $$2Other$$aNotch signaling 000168186 650_7 $$2Other$$acerebellar granule cell progenitor 000168186 7001_ $$00000-0003-3421-2477$$aMiyashita, Satoshi$$b1 000168186 7001_ $$aYamashita, Mariko$$b2 000168186 7001_ $$aShimoda, Mana$$b3 000168186 7001_ $$0P:(DE-He78)34b3639de467b2c700920d7cbc3d2110$$aOkonechnikov, Konstantin$$b4$$udkfz 000168186 7001_ $$aChavez, Lukas$$b5 000168186 7001_ $$0P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aKool, Marcel$$b6$$udkfz 000168186 7001_ $$0P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aPfister, Stefan M$$b7$$udkfz 000168186 7001_ $$00000-0002-2728-0060$$aInoue, Takafumi$$b8 000168186 7001_ $$aKawauchi, Daisuke$$b9 000168186 7001_ $$aHoshino, Mikio$$b10 000168186 773__ $$0PERI:(DE-600)2800598-3$$a10.1523/ENEURO.0468-20.2021$$gp. ENEURO.0468-20.2021 -$$n3$$pENEURO.0468-20.2021$$teNeuro$$v8$$x2373-2822$$y2021 000168186 909CO $$ooai:inrepo02.dkfz.de:168186$$pVDB 000168186 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)34b3639de467b2c700920d7cbc3d2110$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ 000168186 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ 000168186 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ 000168186 9130_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0 000168186 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0 000168186 9141_ $$y2021 000168186 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05 000168186 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05 000168186 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-05 000168186 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-05 000168186 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-05 000168186 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double blind peer review$$d2020-09-05 000168186 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-09-05 000168186 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05 000168186 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-05 000168186 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05 000168186 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-05 000168186 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-05 000168186 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05 000168186 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05 000168186 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-05 000168186 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-05 000168186 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x0 000168186 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1 000168186 980__ $$ajournal 000168186 980__ $$aVDB 000168186 980__ $$aI:(DE-He78)B062-20160331 000168186 980__ $$aI:(DE-He78)HD01-20160331 000168186 980__ $$aUNRESTRICTED