000168225 001__ 168225
000168225 005__ 20240229133601.0
000168225 0247_ $$2doi$$a10.3389/fcell.2021.641618
000168225 0247_ $$2pmid$$apmid:33738287
000168225 0247_ $$2pmc$$apmc:PMC7961101
000168225 0247_ $$2altmetric$$aaltmetric:101125274
000168225 037__ $$aDKFZ-2021-00756
000168225 041__ $$aEnglish
000168225 082__ $$a570
000168225 1001_ $$aHartmann, Oliver$$b0
000168225 245__ $$aImplementation of CRISPR/Cas9 Genome Editing to Generate Murine Lung Cancer Models That Depict the Mutational Landscape of Human Disease.
000168225 260__ $$aLausanne$$bFrontiers Media$$c2021
000168225 3367_ $$2DRIVER$$aarticle
000168225 3367_ $$2DataCite$$aOutput Types/Journal article
000168225 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618989051_19147
000168225 3367_ $$2BibTeX$$aARTICLE
000168225 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000168225 3367_ $$00$$2EndNote$$aJournal Article
000168225 520__ $$aLung cancer is the most common cancer worldwide and the leading cause of cancer-related deaths in both men and women. Despite the development of novel therapeutic interventions, the 5-year survival rate for non-small cell lung cancer (NSCLC) patients remains low, demonstrating the necessity for novel treatments. One strategy to improve translational research is the development of surrogate models reflecting somatic mutations identified in lung cancer patients as these impact treatment responses. With the advent of CRISPR-mediated genome editing, gene deletion as well as site-directed integration of point mutations enabled us to model human malignancies in more detail than ever before. Here, we report that by using CRISPR/Cas9-mediated targeting of Trp53 and KRas, we recapitulated the classic murine NSCLC model Trp53 fl/fl :lsl-KRas G12D/wt . Developing tumors were indistinguishable from Trp53 fl/fl :lsl-KRas G12D/ wt -derived tumors with regard to morphology, marker expression, and transcriptional profiles. We demonstrate the applicability of CRISPR for tumor modeling in vivo and ameliorating the need to use conventional genetically engineered mouse models. Furthermore, tumor onset was not only achieved in constitutive Cas9 expression but also in wild-type animals via infection of lung epithelial cells with two discrete AAVs encoding different parts of the CRISPR machinery. While conventional mouse models require extensive husbandry to integrate new genetic features allowing for gene targeting, basic molecular methods suffice to inflict the desired genetic alterations in vivo. Utilizing the CRISPR toolbox, in vivo cancer research and modeling is rapidly evolving and enables researchers to swiftly develop new, clinically relevant surrogate models for translational research.
000168225 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000168225 588__ $$aDataset connected to CrossRef, PubMed,
000168225 650_7 $$2Other$$aCRISPR-Cas9
000168225 650_7 $$2Other$$aJUN
000168225 650_7 $$2Other$$aKRAS
000168225 650_7 $$2Other$$aMYC
000168225 650_7 $$2Other$$aTP53
000168225 650_7 $$2Other$$alung cancer
000168225 650_7 $$2Other$$amouse model
000168225 650_7 $$2Other$$anon-small cell lung cancer
000168225 7001_ $$aReissland, Michaela$$b1
000168225 7001_ $$0P:(DE-He78)1f8ddd7e4fcde6a06c1baf67829b13c0$$aMaier, Carina R$$b2$$udkfz
000168225 7001_ $$aFischer, Thomas$$b3
000168225 7001_ $$aPrieto-Garcia, Cristian$$b4
000168225 7001_ $$aBaluapuri, Apoorva$$b5
000168225 7001_ $$aSchwarz, Jessica$$b6
000168225 7001_ $$aSchmitz, Werner$$b7
000168225 7001_ $$aGarrido-Rodriguez, Martin$$b8
000168225 7001_ $$aPahor, Nikolett$$b9
000168225 7001_ $$aDavies, Clare C$$b10
000168225 7001_ $$aBassermann, Florian$$b11
000168225 7001_ $$aOrian, Amir$$b12
000168225 7001_ $$aWolf, Elmar$$b13
000168225 7001_ $$0P:(DE-He78)94ae391f53fb9285e1b68f9930615af1$$aSchulze, Almut$$b14$$udkfz
000168225 7001_ $$aCalzado, Marco A$$b15
000168225 7001_ $$aRosenfeldt, Mathias T$$b16
000168225 7001_ $$aDiefenbacher, Markus E$$b17
000168225 773__ $$0PERI:(DE-600)2737824-X$$a10.3389/fcell.2021.641618$$gVol. 9, p. 641618$$p641618$$tFrontiers in cell and developmental biology$$v9$$x2296-634X$$y2021
000168225 909CO $$ooai:inrepo02.dkfz.de:168225$$pVDB
000168225 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1f8ddd7e4fcde6a06c1baf67829b13c0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000168225 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)94ae391f53fb9285e1b68f9930615af1$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ
000168225 9130_ $$0G:(DE-HGF)POF3-311$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vSignalling pathways, cell and tumor biology$$x0
000168225 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000168225 9141_ $$y2021
000168225 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT CELL DEV BIOL : 2019$$d2021-01-30
000168225 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000168225 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000168225 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-30
000168225 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-30
000168225 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-30
000168225 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-30
000168225 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-01-30
000168225 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000168225 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000168225 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-30
000168225 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000168225 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000168225 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000168225 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRONT CELL DEV BIOL : 2019$$d2021-01-30
000168225 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-30
000168225 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-30
000168225 9201_ $$0I:(DE-He78)A410-20160331$$kA410$$lTumor Metabolismus und Microenvironment$$x0
000168225 980__ $$ajournal
000168225 980__ $$aVDB
000168225 980__ $$aI:(DE-He78)A410-20160331
000168225 980__ $$aUNRESTRICTED