001     168225
005     20240229133601.0
024 7 _ |a 10.3389/fcell.2021.641618
|2 doi
024 7 _ |a pmid:33738287
|2 pmid
024 7 _ |a pmc:PMC7961101
|2 pmc
024 7 _ |a altmetric:101125274
|2 altmetric
037 _ _ |a DKFZ-2021-00756
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Hartmann, Oliver
|b 0
245 _ _ |a Implementation of CRISPR/Cas9 Genome Editing to Generate Murine Lung Cancer Models That Depict the Mutational Landscape of Human Disease.
260 _ _ |a Lausanne
|c 2021
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1618989051_19147
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lung cancer is the most common cancer worldwide and the leading cause of cancer-related deaths in both men and women. Despite the development of novel therapeutic interventions, the 5-year survival rate for non-small cell lung cancer (NSCLC) patients remains low, demonstrating the necessity for novel treatments. One strategy to improve translational research is the development of surrogate models reflecting somatic mutations identified in lung cancer patients as these impact treatment responses. With the advent of CRISPR-mediated genome editing, gene deletion as well as site-directed integration of point mutations enabled us to model human malignancies in more detail than ever before. Here, we report that by using CRISPR/Cas9-mediated targeting of Trp53 and KRas, we recapitulated the classic murine NSCLC model Trp53 fl/fl :lsl-KRas G12D/wt . Developing tumors were indistinguishable from Trp53 fl/fl :lsl-KRas G12D/ wt -derived tumors with regard to morphology, marker expression, and transcriptional profiles. We demonstrate the applicability of CRISPR for tumor modeling in vivo and ameliorating the need to use conventional genetically engineered mouse models. Furthermore, tumor onset was not only achieved in constitutive Cas9 expression but also in wild-type animals via infection of lung epithelial cells with two discrete AAVs encoding different parts of the CRISPR machinery. While conventional mouse models require extensive husbandry to integrate new genetic features allowing for gene targeting, basic molecular methods suffice to inflict the desired genetic alterations in vivo. Utilizing the CRISPR toolbox, in vivo cancer research and modeling is rapidly evolving and enables researchers to swiftly develop new, clinically relevant surrogate models for translational research.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a CRISPR-Cas9
|2 Other
650 _ 7 |a JUN
|2 Other
650 _ 7 |a KRAS
|2 Other
650 _ 7 |a MYC
|2 Other
650 _ 7 |a TP53
|2 Other
650 _ 7 |a lung cancer
|2 Other
650 _ 7 |a mouse model
|2 Other
650 _ 7 |a non-small cell lung cancer
|2 Other
700 1 _ |a Reissland, Michaela
|b 1
700 1 _ |a Maier, Carina R
|0 P:(DE-He78)1f8ddd7e4fcde6a06c1baf67829b13c0
|b 2
|u dkfz
700 1 _ |a Fischer, Thomas
|b 3
700 1 _ |a Prieto-Garcia, Cristian
|b 4
700 1 _ |a Baluapuri, Apoorva
|b 5
700 1 _ |a Schwarz, Jessica
|b 6
700 1 _ |a Schmitz, Werner
|b 7
700 1 _ |a Garrido-Rodriguez, Martin
|b 8
700 1 _ |a Pahor, Nikolett
|b 9
700 1 _ |a Davies, Clare C
|b 10
700 1 _ |a Bassermann, Florian
|b 11
700 1 _ |a Orian, Amir
|b 12
700 1 _ |a Wolf, Elmar
|b 13
700 1 _ |a Schulze, Almut
|0 P:(DE-He78)94ae391f53fb9285e1b68f9930615af1
|b 14
|u dkfz
700 1 _ |a Calzado, Marco A
|b 15
700 1 _ |a Rosenfeldt, Mathias T
|b 16
700 1 _ |a Diefenbacher, Markus E
|b 17
773 _ _ |a 10.3389/fcell.2021.641618
|g Vol. 9, p. 641618
|0 PERI:(DE-600)2737824-X
|p 641618
|t Frontiers in cell and developmental biology
|v 9
|y 2021
|x 2296-634X
909 C O |o oai:inrepo02.dkfz.de:168225
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)1f8ddd7e4fcde6a06c1baf67829b13c0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)94ae391f53fb9285e1b68f9930615af1
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-311
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Signalling pathways, cell and tumor biology
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2021
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT CELL DEV BIOL : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FRONT CELL DEV BIOL : 2019
|d 2021-01-30
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-30
920 1 _ |0 I:(DE-He78)A410-20160331
|k A410
|l Tumor Metabolismus und Microenvironment
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A410-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21