001     168283
005     20240229133602.0
024 7 _ |a 10.3390/cancers13071508
|2 doi
024 7 _ |a pmid:33805971
|2 pmid
037 _ _ |a DKFZ-2021-00794
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Koerber, Stefan A
|b 0
245 _ _ |a Predicting the Risk of Metastases by PSMA-PET/CT-Evaluation of 335 Men with Treatment-Naïve Prostate Carcinoma.
260 _ _ |a Basel
|c 2021
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1618491706_29767
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:E060#
520 _ _ |a Men diagnosed with aggressive prostate cancer are at high risk of local relapse or systemic progression after definitive treatment. Treatment intensification is highly needed for that patient cohort; however, no relevant stratification tool has been implemented into the clinical work routine so far. Therefore, the aim of the current study was to analyze the role of initial PSMA-PET/CT as a prediction tool for metastases. In total, 335 men with biopsy-proven prostate carcinoma and PSMA-PET/CT for primary staging were enrolled in the present, retrospective study. The number and site of metastases were analyzed and correlated with the maximum standardized uptake value (SUVmax) of the intraprostatic, malignant lesion. Receiver operating characteristic (ROC) curves were used to determine sensitivity and specificity and a model was created using multiple logistic regression. PSMA-PET/CT detected 171 metastases with PSMA-uptake in 82 patients. A statistically significant higher SUVmax was found for men with metastatic disease than for the cohort without distant metastases (median 16.1 vs. 11.2; p < 0.001). The area under the curve (AUC) in regard to predicting the presence of any metastases was 0.65. Choosing a cut-off value of 11.9 for SUVmax, a sensitivity and specificity (factor 1:1) of 76.0% and 58.4% was obtained. The current study confirms, that initial PSMA-PET/CT is able to detect a relatively high number of treatment-naïve men with metastatic prostate carcinoma. Intraprostatic SUVmax seems to be a promising parameter for the prediction of distant disease and could be used for treatment stratification-aspects which should be verified within prospective trials.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a PET
|2 Other
650 _ 7 |a PSMA
|2 Other
650 _ 7 |a intraprostatic SUV
|2 Other
650 _ 7 |a metastases
|2 Other
650 _ 7 |a prostate cancer
|2 Other
700 1 _ |a Boesch, Johannes
|b 1
700 1 _ |a Kratochwil, Clemens
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schlampp, Ingmar
|b 3
700 1 _ |a Ristau, Jonas
|b 4
700 1 _ |a Winter, Erik
|b 5
700 1 _ |a Zschaebitz, Stefanie
|b 6
700 1 _ |a Hofer, Luisa
|b 7
700 1 _ |a Herfarth, Klaus
|b 8
700 1 _ |a Kopka, Klaus
|0 P:(DE-He78)9793347ba83f527b81a22ab75af9378a
|b 9
|u dkfz
700 1 _ |a Holland-Letz, Tim
|0 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
|b 10
|u dkfz
700 1 _ |a Jaeger, Dirk
|b 11
700 1 _ |a Hohenfellner, Markus
|b 12
700 1 _ |a Haberkorn, Uwe
|0 P:(DE-He78)13a0afba029f5f64dc18b25ef7499558
|b 13
|u dkfz
700 1 _ |a Debus, Juergen
|0 0000-0002-6411-4811
|b 14
700 1 _ |a Giesel, Frederik
|0 P:(DE-He78)5ca7e97b2769bb97f8c73431c6566b94
|b 15
|e Last author
|u dkfz
773 _ _ |a 10.3390/cancers13071508
|g Vol. 13, no. 7, p. 1508 -
|0 PERI:(DE-600)2527080-1
|n 7
|p 1508
|t Cancers
|v 13
|y 2021
|x 2072-6694
909 C O |o oai:inrepo02.dkfz.de:168283
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)9793347ba83f527b81a22ab75af9378a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)13a0afba029f5f64dc18b25ef7499558
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 0000-0002-6411-4811
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)5ca7e97b2769bb97f8c73431c6566b94
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2021
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCERS : 2018
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-09-11
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CANCERS : 2018
|d 2020-09-11
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-11
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-11
920 1 _ |0 I:(DE-He78)E060-20160331
|k E060
|l E060 KKE Nuklearmedizin
|x 0
920 1 _ |0 I:(DE-He78)DD01-20160331
|k DD01
|l DKTK DD zentral
|x 1
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 2
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 3
920 1 _ |0 I:(DE-He78)E050-20160331
|k E050
|l E050 KKE Strahlentherapie
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E060-20160331
980 _ _ |a I:(DE-He78)DD01-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)E050-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21