000168300 001__ 168300
000168300 005__ 20240229133603.0
000168300 0247_ $$2doi$$a10.3390/cancers13051019
000168300 0247_ $$2pmid$$apmid:33804417
000168300 037__ $$aDKFZ-2021-00811
000168300 041__ $$aEnglish
000168300 082__ $$a610
000168300 1001_ $$0P:(DE-He78)69d2d5247c019c2a2075502dc11bf0b2$$aSachpekidis, Christos$$b0$$eFirst author$$udkfz
000168300 245__ $$aQuantitative Dynamic 18F-FDG PET/CT in Survival Prediction of Metastatic Melanoma under PD-1 Inhibitors.
000168300 260__ $$aBasel$$bMDPI$$c2021
000168300 3367_ $$2DRIVER$$aarticle
000168300 3367_ $$2DataCite$$aOutput Types/Journal article
000168300 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1668591190_22118
000168300 3367_ $$2BibTeX$$aARTICLE
000168300 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000168300 3367_ $$00$$2EndNote$$aJournal Article
000168300 500__ $$a#EA:E060#LA:E060#
000168300 520__ $$aThe advent of novel immune checkpoint inhibitors has led to unprecedented survival rates in advanced melanoma. At the same time, it has raised relevant challenges in the interpretation of treatment response by conventional imaging approaches. In the present prospective study, we explored the predictive role of quantitative, dynamic 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) performed early during immunotherapy in metastatic melanoma patients receiving treatment with programmed cell death protein 1 (PD-1) inhibitors. Twenty-five patients under PD-1 blockade underwent dynamic and static 18F-FDG PET/CT before the start of treatment (baseline PET/CT) and after the initial two cycles of therapy (interim PET/CT). The impact of semiquantitatively (standardized uptake value, SUV) and quantitatively (based on compartment modeling and fractal analysis) derived PET/CT parameters, both from melanoma lesions and different reference tissues, on progression-free survival (PFS) was analyzed. At a median follow-up of 24.2 months, survival analysis revealed that the interim PET/CT parameters SUVmean, SUVmax and fractal dimension (FD) of the hottest melanoma lesions adversely affected PFS, while the parameters FD of the thyroid, as well as SUVmax and k3 of the bone marrow positively affected PFS. The herein presented findings highlight the potential predictive role of quantitative, dynamic, interim PET/CT in metastatic melanoma under PD-1 blockade. Therefore, dynamic PET/CT could be performed in selected oncological cases in combination with static, whole-body PET/CT in order to enhance the diagnostic certainty offered by conventional imaging and yield additional information regarding specific molecular and pathophysiological mechanisms involved in tumor biology and response to treatment.
000168300 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000168300 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000168300 650_7 $$2Other$$a18F-FDG
000168300 650_7 $$2Other$$aPD-1 inhibitors
000168300 650_7 $$2Other$$aSUV
000168300 650_7 $$2Other$$acompartment modeling
000168300 650_7 $$2Other$$adynamic PET/CT
000168300 650_7 $$2Other$$afractal analysis
000168300 650_7 $$2Other$$ametastatic melanoma
000168300 650_7 $$2Other$$apharmacokinetics
000168300 7001_ $$aHassel, Jessica C$$b1
000168300 7001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, Annette$$b2$$udkfz
000168300 7001_ $$0P:(DE-He78)13a0afba029f5f64dc18b25ef7499558$$aHaberkorn, Uwe$$b3$$udkfz
000168300 7001_ $$0P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992$$aDimitrakopoulou-Strauss, Antonia$$b4$$eLast author$$udkfz
000168300 773__ $$0PERI:(DE-600)2527080-1$$a10.3390/cancers13051019$$gVol. 13, no. 5, p. 1019 -$$n5$$p1019$$tCancers$$v13$$x2072-6694$$y2021
000168300 909CO $$ooai:inrepo02.dkfz.de:168300$$pVDB
000168300 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)69d2d5247c019c2a2075502dc11bf0b2$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000168300 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000168300 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)13a0afba029f5f64dc18b25ef7499558$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000168300 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000168300 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000168300 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000168300 9141_ $$y2021
000168300 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCANCERS : 2018$$d2020-09-11
000168300 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-11
000168300 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-11
000168300 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-11
000168300 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-11
000168300 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-11
000168300 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-11
000168300 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-09-11
000168300 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-11
000168300 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-11
000168300 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-11
000168300 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-11
000168300 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-11
000168300 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-11
000168300 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-11
000168300 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-11
000168300 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCANCERS : 2018$$d2020-09-11
000168300 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-11
000168300 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-11
000168300 9201_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x0
000168300 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x1
000168300 980__ $$ajournal
000168300 980__ $$aVDB
000168300 980__ $$aI:(DE-He78)E060-20160331
000168300 980__ $$aI:(DE-He78)C060-20160331
000168300 980__ $$aUNRESTRICTED