001     168300
005     20240229133603.0
024 7 _ |a 10.3390/cancers13051019
|2 doi
024 7 _ |a pmid:33804417
|2 pmid
037 _ _ |a DKFZ-2021-00811
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Sachpekidis, Christos
|0 P:(DE-He78)69d2d5247c019c2a2075502dc11bf0b2
|b 0
|e First author
|u dkfz
245 _ _ |a Quantitative Dynamic 18F-FDG PET/CT in Survival Prediction of Metastatic Melanoma under PD-1 Inhibitors.
260 _ _ |a Basel
|c 2021
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1668591190_22118
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E060#LA:E060#
520 _ _ |a The advent of novel immune checkpoint inhibitors has led to unprecedented survival rates in advanced melanoma. At the same time, it has raised relevant challenges in the interpretation of treatment response by conventional imaging approaches. In the present prospective study, we explored the predictive role of quantitative, dynamic 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) performed early during immunotherapy in metastatic melanoma patients receiving treatment with programmed cell death protein 1 (PD-1) inhibitors. Twenty-five patients under PD-1 blockade underwent dynamic and static 18F-FDG PET/CT before the start of treatment (baseline PET/CT) and after the initial two cycles of therapy (interim PET/CT). The impact of semiquantitatively (standardized uptake value, SUV) and quantitatively (based on compartment modeling and fractal analysis) derived PET/CT parameters, both from melanoma lesions and different reference tissues, on progression-free survival (PFS) was analyzed. At a median follow-up of 24.2 months, survival analysis revealed that the interim PET/CT parameters SUVmean, SUVmax and fractal dimension (FD) of the hottest melanoma lesions adversely affected PFS, while the parameters FD of the thyroid, as well as SUVmax and k3 of the bone marrow positively affected PFS. The herein presented findings highlight the potential predictive role of quantitative, dynamic, interim PET/CT in metastatic melanoma under PD-1 blockade. Therefore, dynamic PET/CT could be performed in selected oncological cases in combination with static, whole-body PET/CT in order to enhance the diagnostic certainty offered by conventional imaging and yield additional information regarding specific molecular and pathophysiological mechanisms involved in tumor biology and response to treatment.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a 18F-FDG
|2 Other
650 _ 7 |a PD-1 inhibitors
|2 Other
650 _ 7 |a SUV
|2 Other
650 _ 7 |a compartment modeling
|2 Other
650 _ 7 |a dynamic PET/CT
|2 Other
650 _ 7 |a fractal analysis
|2 Other
650 _ 7 |a metastatic melanoma
|2 Other
650 _ 7 |a pharmacokinetics
|2 Other
700 1 _ |a Hassel, Jessica C
|b 1
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 2
|u dkfz
700 1 _ |a Haberkorn, Uwe
|0 P:(DE-He78)13a0afba029f5f64dc18b25ef7499558
|b 3
|u dkfz
700 1 _ |a Dimitrakopoulou-Strauss, Antonia
|0 P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992
|b 4
|e Last author
|u dkfz
773 _ _ |a 10.3390/cancers13051019
|g Vol. 13, no. 5, p. 1019 -
|0 PERI:(DE-600)2527080-1
|n 5
|p 1019
|t Cancers
|v 13
|y 2021
|x 2072-6694
909 C O |p VDB
|o oai:inrepo02.dkfz.de:168300
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)69d2d5247c019c2a2075502dc11bf0b2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)13a0afba029f5f64dc18b25ef7499558
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
914 1 _ |y 2021
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCERS : 2018
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-09-11
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CANCERS : 2018
|d 2020-09-11
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-11
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-11
920 1 _ |0 I:(DE-He78)E060-20160331
|k E060
|l E060 KKE Nuklearmedizin
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E060-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21