Home > Publications database > A consistent version of distance covariance for right-censored survival data and its application in hypothesis testing. > print |
001 | 168370 | ||
005 | 20240229133606.0 | ||
024 | 7 | _ | |a 10.1111/biom.13470 |2 doi |
024 | 7 | _ | |a pmid:33847373 |2 pmid |
024 | 7 | _ | |a 0006-341X |2 ISSN |
024 | 7 | _ | |a 1541-0420 |2 ISSN |
024 | 7 | _ | |a altmetric:103830044 |2 altmetric |
037 | _ | _ | |a DKFZ-2021-00859 |
041 | _ | _ | |a English |
082 | _ | _ | |a 310 |
100 | 1 | _ | |a Edelmann, Dominic |0 P:(DE-He78)92820b4867c955a04f642707ecf35b40 |b 0 |e First author |u dkfz |
245 | _ | _ | |a A consistent version of distance covariance for right-censored survival data and its application in hypothesis testing. |
260 | _ | _ | |a Malden, Mass. [u.a.] |c 2022 |b Wiley-Blackwell |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1665053511_20168 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:C060#LA:C060# / 2022 Sep;78(3):867-879 |
520 | _ | _ | |a Distance covariance is a powerful new dependence measure that was recently introduced by Székely et al. (2007) and Székely and Rizzo (2009). In this work, the concept of distance covariance is extended to measuring dependence between a covariate vector and a right-censored survival endpoint by establishing an estimator based on an inverse-probability-of-censoring weighted U-statistic. The consistency of the novel estimator is derived. In a large simulation study, it is shown that induced distance covariance permutation tests show a good performance in detecting various complex associations. Applying the distance covariance permutation tests on a gene expression dataset from breast cancer patients outlines its potential for biostatistical practice. This article is protected by copyright. All rights reserved. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de |
650 | _ | 7 | |a distance correlation |2 Other |
650 | _ | 7 | |a distance covariance |2 Other |
650 | _ | 7 | |a hypothesis testing |2 Other |
650 | _ | 7 | |a nonlinear |2 Other |
650 | _ | 7 | |a survival analysis |2 Other |
700 | 1 | _ | |a Welchowski, Thomas |b 1 |
700 | 1 | _ | |a Benner, Axel |0 P:(DE-He78)e15dfa1260625c69d6690a197392a994 |b 2 |e Last author |u dkfz |
773 | _ | _ | |a 10.1111/biom.13470 |g p. biom.13470 |0 PERI:(DE-600)2054197-1 |n 3 |p 867-879 |t Biometrics |v 78 |y 2022 |x 1541-0420 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:168370 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)92820b4867c955a04f642707ecf35b40 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)e15dfa1260625c69d6690a197392a994 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
913 | 0 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-313 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Cancer risk factors and prevention |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-02-03 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-03 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2022-11-23 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2022-11-23 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BIOMETRICS : 2021 |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-23 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-23 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-23 |
920 | 1 | _ | |0 I:(DE-He78)C060-20160331 |k C060 |l C060 Biostatistik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C060-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|