001     168373
005     20240415075928.0
024 7 _ |a 10.1038/s41597-021-00882-2
|2 doi
024 7 _ |a pmid:33846356
|2 pmid
024 7 _ |a 2052-4436
|2 ISSN
024 7 _ |a 2052-4463
|2 ISSN
024 7 _ |a altmetric:103764123
|2 altmetric
037 _ _ |a DKFZ-2021-00862
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Maier-Hein, Lena
|0 P:(DE-He78)26a1176cd8450660333a012075050072
|b 0
|e First author
245 _ _ |a Heidelberg colorectal data set for surgical data science in the sensor operating room.
260 _ _ |a London
|c 2021
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1713160738_20786
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E130#
520 _ _ |a Image-based tracking of medical instruments is an integral part of surgical data science applications. Previous research has addressed the tasks of detecting, segmenting and tracking medical instruments based on laparoscopic video data. However, the proposed methods still tend to fail when applied to challenging images and do not generalize well to data they have not been trained on. This paper introduces the Heidelberg Colorectal (HeiCo) data set - the first publicly available data set enabling comprehensive benchmarking of medical instrument detection and segmentation algorithms with a specific emphasis on method robustness and generalization capabilities. Our data set comprises 30 laparoscopic videos and corresponding sensor data from medical devices in the operating room for three different types of laparoscopic surgery. Annotations include surgical phase labels for all video frames as well as information on instrument presence and corresponding instance-wise segmentation masks for surgical instruments (if any) in more than 10,000 individual frames. The data has successfully been used to organize international competitions within the Endoscopic Vision Challenges 2017 and 2019.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
700 1 _ |a Wagner, Martin
|b 1
700 1 _ |a Ross, Tobias
|0 P:(DE-He78)47f4a97043307540977baf09618b5d3d
|b 2
700 1 _ |a Reinke, Annika
|0 P:(DE-He78)97e904f47dab556a77c0149cd0002591
|b 3
700 1 _ |a Bodenstedt, Sebastian
|0 P:(DE-He78)7e1dc3bb70d3108f5a58a20d7fc75981
|b 4
700 1 _ |a Full, Peter M
|0 P:(DE-He78)e9dc924f238fa6cc29465942875fe8f0
|b 5
|u dkfz
700 1 _ |a Hempe, Hellena
|0 P:(DE-He78)da8f1598d3f8fda8a28b67a3b2d740f3
|b 6
700 1 _ |a Mindroc-Filimon, Diana
|0 P:(DE-He78)7fd32778819c90575f8df07034e04808
|b 7
700 1 _ |a Scholz, Patrick
|0 P:(DE-He78)77a2a5b07dcbd46277a18a32372ea154
|b 8
700 1 _ |a Tran, Thuy Nuong
|0 P:(DE-He78)96509db5798da9bcccf0d34db39f50e7
|b 9
700 1 _ |a Bruno, Pierangela
|0 P:(DE-He78)861d46b75ffd6c1abb386ca3c5197bac
|b 10
700 1 _ |a Kisilenko, Anna
|b 11
700 1 _ |a Müller, Benjamin
|b 12
700 1 _ |a Davitashvili, Tornike
|b 13
700 1 _ |a Capek, Manuela
|b 14
700 1 _ |a Tizabi, Minu D
|0 P:(DE-He78)26651d9aa10255ad4f35610a56aa91e8
|b 15
700 1 _ |a Eisenmann, Matthias
|0 P:(DE-He78)c9d6245b17f0ab26eeed345cb00d3359
|b 16
700 1 _ |a Adler, Tim J
|0 P:(DE-He78)ae131915396ed2f27752c043e123897e
|b 17
700 1 _ |a Gröhl, Janek
|0 P:(DE-He78)fd657bfbb3c4757ac029bb6b56ab9b71
|b 18
700 1 _ |a Schellenberg, Melanie
|0 P:(DE-He78)9d0e93f03c73f265ef93b2217b023d60
|b 19
700 1 _ |a Seidlitz, Silvia
|0 P:(DE-He78)6f627fc52580baaa9c8dd007c7b32f8f
|b 20
700 1 _ |a Lai, T Y Emmy
|b 21
700 1 _ |a Pekdemir, Bünyamin
|0 P:(DE-He78)01006b3b56865f6bdad60eb489028403
|b 22
700 1 _ |a Roethlingshoefer, Veith
|b 23
700 1 _ |a Both, Fabian
|b 24
700 1 _ |a Bittel, Sebastian
|b 25
700 1 _ |a Mengler, Marc
|b 26
700 1 _ |a Mündermann, Lars
|b 27
700 1 _ |a Apitz, Martin
|b 28
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 29
700 1 _ |a Speidel, Stefanie
|b 30
700 1 _ |a Nickel, Felix
|0 0000-0001-6066-8238
|b 31
700 1 _ |a Probst, Pascal
|0 0000-0002-0895-4015
|b 32
700 1 _ |a Kenngott, Hannes G
|b 33
700 1 _ |a Müller-Stich, Beat P
|b 34
773 _ _ |a 10.1038/s41597-021-00882-2
|g Vol. 8, no. 1, p. 101
|0 PERI:(DE-600)2775191-0
|n 1
|p 101
|t Scientific data
|v 8
|y 2021
|x 2052-4463
909 C O |p VDB
|o oai:inrepo02.dkfz.de:168373
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)26a1176cd8450660333a012075050072
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)47f4a97043307540977baf09618b5d3d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)97e904f47dab556a77c0149cd0002591
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-He78)7e1dc3bb70d3108f5a58a20d7fc75981
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)e9dc924f238fa6cc29465942875fe8f0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)da8f1598d3f8fda8a28b67a3b2d740f3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)7fd32778819c90575f8df07034e04808
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)77a2a5b07dcbd46277a18a32372ea154
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)96509db5798da9bcccf0d34db39f50e7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)861d46b75ffd6c1abb386ca3c5197bac
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)26651d9aa10255ad4f35610a56aa91e8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)c9d6245b17f0ab26eeed345cb00d3359
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)ae131915396ed2f27752c043e123897e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)fd657bfbb3c4757ac029bb6b56ab9b71
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 19
|6 P:(DE-He78)9d0e93f03c73f265ef93b2217b023d60
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-He78)6f627fc52580baaa9c8dd007c7b32f8f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 22
|6 P:(DE-He78)01006b3b56865f6bdad60eb489028403
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 29
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
914 1 _ |y 2021
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI DATA : 2018
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-09-06
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-06
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI DATA : 2018
|d 2020-09-06
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-06
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-06
920 1 _ |0 I:(DE-He78)E130-20160331
|k E130
|l E130 Intelligente Medizinische Systeme
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E130-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21