000168497 001__ 168497
000168497 005__ 20240229133610.0
000168497 0247_ $$2doi$$a10.21037/tlcr-20-1173
000168497 0247_ $$2pmid$$apmid:33889511
000168497 0247_ $$2pmc$$apmc:PMC8044498
000168497 0247_ $$2ISSN$$a2218-6751
000168497 0247_ $$2ISSN$$a2226-4477
000168497 0247_ $$2altmetric$$aaltmetric:104555985
000168497 037__ $$aDKFZ-2021-00932
000168497 041__ $$aEnglish
000168497 082__ $$a610
000168497 1001_ $$0P:(DE-He78)5b69eb65801a144c299d2aee312aefa8$$aGonzalez Maldonado, Sandra$$b0$$eFirst author$$udkfz
000168497 245__ $$aValidation of multivariable lung cancer risk prediction models for the personalized assignment of optimal screening frequency: a retrospective analysis of data from the German Lung Cancer Screening Intervention Trial (LUSI).
000168497 260__ $$a[S.l.]$$c2021
000168497 3367_ $$2DRIVER$$aarticle
000168497 3367_ $$2DataCite$$aOutput Types/Journal article
000168497 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619603631_10127
000168497 3367_ $$2BibTeX$$aARTICLE
000168497 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000168497 3367_ $$00$$2EndNote$$aJournal Article
000168497 500__ $$a#EA:C020#LA:C020#
000168497 520__ $$aCurrent guidelines for lung cancer screening via low-dose computed tomography recommend annual screening for all candidates meeting basic eligibility criteria. However, lung cancer risk of eligible screening participants can vary widely, and further risk stratification could be used to individually optimize screening intervals in view of expected benefits, possible harms and financial costs. To this effect, models have been developed in the US National Lung Screening Trial based on self-reported lung cancer risk factors and imaging data. We evaluated these models using data from an independent screening trial in Germany.We examined the Polynomial model by Schreuder et al., the Lung Cancer Risk Assessment Tool extended by CT characteristics (LCRAT + CT) by Robbins et al., and a criterion of presence vs. absence of pulmonary nodules ≥4 mm (Patz et al.), applied to sub-sets of screening participants according to eligibility criteria. Discrimination was evaluated via the receiver operating characteristic curve. Delayed diagnoses and false positive results were calculated at various thresholds of predicted risk. Model calibration was assessed by comparing mean predicted risk versus observed incidence.One thousand five hundred and six participants were eligible for the validation of the LCRAT + CT model, and 1,889 for the validation of the Polynomial model and Patz criterion, yielding areas under the receiver operating characteristic curve of 0.73 (95% CI: 0.63, 0.82), 0.75 (0.67, 0.83), and 0.56 (0.53, 0.72) respectively. Skipping 50% annual screenings (participants within the 5 lowest risk deciles by LCRAT + CT in any round or by the Polynomial model; baseline screening round), would have avoided 75% (21.9%, 98.7%) and 40% (21.8%, 61.1%) false positive screen tests and delayed 10% (1.8%, 33.1%) or no (0%, 32.1%) diagnoses, respectively. Using the Patz criterion, referring 63.2% (61.0% to 65.4%) of participants to biennial screening would have avoided 4% (0.2% to 22.3%) of false positive screen tests but delayed 55% (24.6% to 81.9%) diagnoses.In this German trial, the LCRAT + CT and Polynomial models showed useful discrimination of screening participants for one-year lung cancer risk following CT examination. Our results illustrate the remaining heterogeneity in risk within screening-eligible subjects and the trade-off between a low-frequency screening approach and delayed detection.
000168497 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000168497 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000168497 650_7 $$2Other$$aLung cancer screening
000168497 650_7 $$2Other$$arisk prediction
000168497 650_7 $$2Other$$ascreening intervals
000168497 650_7 $$2Other$$avalidation
000168497 7001_ $$0P:(DE-He78)f55fe2dee9fdef0b4db17187de23a9bf$$aHynes, Lucas Cory$$b1$$udkfz
000168497 7001_ $$0P:(DE-He78)474d6825dc4c767e7164354e6fe8c885$$aMotsch, Erna$$b2$$udkfz
000168497 7001_ $$aHeussel, Claus-Peter$$b3
000168497 7001_ $$aKauczor, Hans-Ulrich$$b4
000168497 7001_ $$aRobbins, Hilary A$$b5
000168497 7001_ $$0P:(DE-He78)3e76653311420a51a5faeb80363bd73e$$aDelorme, Stefan$$b6$$udkfz
000168497 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b7$$eLast author$$udkfz
000168497 773__ $$0PERI:(DE-600)2754335-3$$a10.21037/tlcr-20-1173$$gVol. 10, no. 3, p. 1305 - 1317$$n3$$p1305 - 1317$$tTranslational Lung Cancer Research$$v10$$x2226-4477$$y2021
000168497 909CO $$ooai:inrepo02.dkfz.de:168497$$pVDB
000168497 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5b69eb65801a144c299d2aee312aefa8$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000168497 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f55fe2dee9fdef0b4db17187de23a9bf$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000168497 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)474d6825dc4c767e7164354e6fe8c885$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000168497 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3e76653311420a51a5faeb80363bd73e$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000168497 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000168497 9130_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000168497 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000168497 9141_ $$y2021
000168497 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000168497 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000168497 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-03
000168497 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000168497 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000168497 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-02-03
000168497 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000168497 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000168497 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTRANSL LUNG CANCER R : 2019$$d2021-02-03
000168497 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bTRANSL LUNG CANCER R : 2019$$d2021-02-03
000168497 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000168497 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x1
000168497 980__ $$ajournal
000168497 980__ $$aVDB
000168497 980__ $$aI:(DE-He78)C020-20160331
000168497 980__ $$aI:(DE-He78)E010-20160331
000168497 980__ $$aUNRESTRICTED