001     168497
005     20240229133610.0
024 7 _ |a 10.21037/tlcr-20-1173
|2 doi
024 7 _ |a pmid:33889511
|2 pmid
024 7 _ |a pmc:PMC8044498
|2 pmc
024 7 _ |a 2218-6751
|2 ISSN
024 7 _ |a 2226-4477
|2 ISSN
024 7 _ |a altmetric:104555985
|2 altmetric
037 _ _ |a DKFZ-2021-00932
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Gonzalez Maldonado, Sandra
|0 P:(DE-He78)5b69eb65801a144c299d2aee312aefa8
|b 0
|e First author
|u dkfz
245 _ _ |a Validation of multivariable lung cancer risk prediction models for the personalized assignment of optimal screening frequency: a retrospective analysis of data from the German Lung Cancer Screening Intervention Trial (LUSI).
260 _ _ |a [S.l.]
|c 2021
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1619603631_10127
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C020#LA:C020#
520 _ _ |a Current guidelines for lung cancer screening via low-dose computed tomography recommend annual screening for all candidates meeting basic eligibility criteria. However, lung cancer risk of eligible screening participants can vary widely, and further risk stratification could be used to individually optimize screening intervals in view of expected benefits, possible harms and financial costs. To this effect, models have been developed in the US National Lung Screening Trial based on self-reported lung cancer risk factors and imaging data. We evaluated these models using data from an independent screening trial in Germany.We examined the Polynomial model by Schreuder et al., the Lung Cancer Risk Assessment Tool extended by CT characteristics (LCRAT + CT) by Robbins et al., and a criterion of presence vs. absence of pulmonary nodules ≥4 mm (Patz et al.), applied to sub-sets of screening participants according to eligibility criteria. Discrimination was evaluated via the receiver operating characteristic curve. Delayed diagnoses and false positive results were calculated at various thresholds of predicted risk. Model calibration was assessed by comparing mean predicted risk versus observed incidence.One thousand five hundred and six participants were eligible for the validation of the LCRAT + CT model, and 1,889 for the validation of the Polynomial model and Patz criterion, yielding areas under the receiver operating characteristic curve of 0.73 (95% CI: 0.63, 0.82), 0.75 (0.67, 0.83), and 0.56 (0.53, 0.72) respectively. Skipping 50% annual screenings (participants within the 5 lowest risk deciles by LCRAT + CT in any round or by the Polynomial model; baseline screening round), would have avoided 75% (21.9%, 98.7%) and 40% (21.8%, 61.1%) false positive screen tests and delayed 10% (1.8%, 33.1%) or no (0%, 32.1%) diagnoses, respectively. Using the Patz criterion, referring 63.2% (61.0% to 65.4%) of participants to biennial screening would have avoided 4% (0.2% to 22.3%) of false positive screen tests but delayed 55% (24.6% to 81.9%) diagnoses.In this German trial, the LCRAT + CT and Polynomial models showed useful discrimination of screening participants for one-year lung cancer risk following CT examination. Our results illustrate the remaining heterogeneity in risk within screening-eligible subjects and the trade-off between a low-frequency screening approach and delayed detection.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a Lung cancer screening
|2 Other
650 _ 7 |a risk prediction
|2 Other
650 _ 7 |a screening intervals
|2 Other
650 _ 7 |a validation
|2 Other
700 1 _ |a Hynes, Lucas Cory
|0 P:(DE-He78)f55fe2dee9fdef0b4db17187de23a9bf
|b 1
|u dkfz
700 1 _ |a Motsch, Erna
|0 P:(DE-He78)474d6825dc4c767e7164354e6fe8c885
|b 2
|u dkfz
700 1 _ |a Heussel, Claus-Peter
|b 3
700 1 _ |a Kauczor, Hans-Ulrich
|b 4
700 1 _ |a Robbins, Hilary A
|b 5
700 1 _ |a Delorme, Stefan
|0 P:(DE-He78)3e76653311420a51a5faeb80363bd73e
|b 6
|u dkfz
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 7
|e Last author
|u dkfz
773 _ _ |a 10.21037/tlcr-20-1173
|g Vol. 10, no. 3, p. 1305 - 1317
|0 PERI:(DE-600)2754335-3
|n 3
|p 1305 - 1317
|t Translational Lung Cancer Research
|v 10
|y 2021
|x 2226-4477
909 C O |o oai:inrepo02.dkfz.de:168497
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)5b69eb65801a144c299d2aee312aefa8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)f55fe2dee9fdef0b4db17187de23a9bf
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)474d6825dc4c767e7164354e6fe8c885
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)3e76653311420a51a5faeb80363bd73e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TRANSL LUNG CANCER R : 2019
|d 2021-02-03
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b TRANSL LUNG CANCER R : 2019
|d 2021-02-03
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21