000168724 001__ 168724
000168724 005__ 20240229133614.0
000168724 0247_ $$2doi$$a10.1002/nbm.4515
000168724 0247_ $$2pmid$$apmid:33942938
000168724 0247_ $$2ISSN$$a0952-3480
000168724 0247_ $$2ISSN$$a1099-1492
000168724 0247_ $$2altmetric$$aaltmetric:105347127
000168724 037__ $$aDKFZ-2021-01028
000168724 041__ $$aEnglish
000168724 082__ $$a610
000168724 1001_ $$0P:(DE-He78)bcbe9862276365dd99a98b48449fd046$$aFiedler, Thomas$$b0$$eFirst author$$udkfz
000168724 245__ $$aPerformance analysis of integrated RF microstrip transmit antenna arrays with high channel count for body imaging at 7 T.
000168724 260__ $$aNew York, NY$$bWiley$$c2021
000168724 3367_ $$2DRIVER$$aarticle
000168724 3367_ $$2DataCite$$aOutput Types/Journal article
000168724 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625060383_11425
000168724 3367_ $$2BibTeX$$aARTICLE
000168724 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000168724 3367_ $$00$$2EndNote$$aJournal Article
000168724 500__ $$a#EA:E020#/2021 Jul;34(7):e4515
000168724 520__ $$aThe aim of the current study was to investigate the performance of integrated RF transmit arrays with high channel count consisting of meander microstrip antennas for body imaging at 7 T and to optimize the position and number of transmit elements. RF simulations using multiring antenna arrays placed behind the bore liner were performed for realistic exposure conditions for body imaging. Simulations were performed for arrays with as few as eight elements and for arrays with high channel counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of freedom for RF shimming in the abdomen. Worst-case specific absorption rate (SARwc ), SAR overestimation in the matrix compression, the number of virtual observation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming was performed in differently oriented regions of interest in the body, and the deviation from a target B1+ field was evaluated. Results show that integrated multiring arrays are able to generate homogeneous B1+ field distributions for large FOVs, especially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical workflow; however, a low duty cycle or a high SAR is required to achieve homogeneous B1+ distributions and to exploit the full potential. In conclusion, integrated arrays allow for high element counts that have high degrees of freedom for the pulse optimization but also produce high SARwc , which reduces the SAR accuracy in the VOP compression for low-SAR protocols, leading to a potential reduction in array performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a high number of VOPs, which increases the computational cost for VOP evaluation and makes online SAR monitoring or pulse optimization challenging. Arrays with interleaved rings showed the best results in the study.
000168724 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000168724 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000168724 650_7 $$2Other$$aVOP compression
000168724 650_7 $$2Other$$abody imaging at UHF MRI
000168724 650_7 $$2Other$$aintegrated transmit coil arrays
000168724 7001_ $$0P:(DE-He78)7985b432d853ab8929db0f1cb121667f$$aOrzada, Stephan$$b1$$udkfz
000168724 7001_ $$0P:(DE-He78)cce06651cdcf863bbdcc14cc7b704c98$$aFlöser, Martina$$b2
000168724 7001_ $$aRietsch, Stefan H G$$b3
000168724 7001_ $$aQuick, Harald H$$b4
000168724 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark E$$b5$$udkfz
000168724 7001_ $$aBitz, Andreas K$$b6
000168724 773__ $$0PERI:(DE-600)2002003-X$$a10.1002/nbm.4515$$n7$$pe4515$$tNMR in biomedicine$$v34$$x1099-1492$$y2021
000168724 909CO $$ooai:inrepo02.dkfz.de:168724$$pVDB
000168724 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bcbe9862276365dd99a98b48449fd046$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000168724 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7985b432d853ab8929db0f1cb121667f$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000168724 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)cce06651cdcf863bbdcc14cc7b704c98$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000168724 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000168724 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000168724 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000168724 9141_ $$y2021
000168724 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000168724 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000168724 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNMR BIOMED : 2019$$d2021-01-28
000168724 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000168724 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000168724 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000168724 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-28
000168724 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000168724 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000168724 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000168724 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000168724 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000168724 980__ $$ajournal
000168724 980__ $$aVDB
000168724 980__ $$aI:(DE-He78)E020-20160331
000168724 980__ $$aUNRESTRICTED