001     168724
005     20240229133614.0
024 7 _ |a 10.1002/nbm.4515
|2 doi
024 7 _ |a pmid:33942938
|2 pmid
024 7 _ |a 0952-3480
|2 ISSN
024 7 _ |a 1099-1492
|2 ISSN
024 7 _ |a altmetric:105347127
|2 altmetric
037 _ _ |a DKFZ-2021-01028
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Fiedler, Thomas
|0 P:(DE-He78)bcbe9862276365dd99a98b48449fd046
|b 0
|e First author
|u dkfz
245 _ _ |a Performance analysis of integrated RF microstrip transmit antenna arrays with high channel count for body imaging at 7 T.
260 _ _ |a New York, NY
|c 2021
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1625060383_11425
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E020#/2021 Jul;34(7):e4515
520 _ _ |a The aim of the current study was to investigate the performance of integrated RF transmit arrays with high channel count consisting of meander microstrip antennas for body imaging at 7 T and to optimize the position and number of transmit elements. RF simulations using multiring antenna arrays placed behind the bore liner were performed for realistic exposure conditions for body imaging. Simulations were performed for arrays with as few as eight elements and for arrays with high channel counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of freedom for RF shimming in the abdomen. Worst-case specific absorption rate (SARwc ), SAR overestimation in the matrix compression, the number of virtual observation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming was performed in differently oriented regions of interest in the body, and the deviation from a target B1+ field was evaluated. Results show that integrated multiring arrays are able to generate homogeneous B1+ field distributions for large FOVs, especially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical workflow; however, a low duty cycle or a high SAR is required to achieve homogeneous B1+ distributions and to exploit the full potential. In conclusion, integrated arrays allow for high element counts that have high degrees of freedom for the pulse optimization but also produce high SARwc , which reduces the SAR accuracy in the VOP compression for low-SAR protocols, leading to a potential reduction in array performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a high number of VOPs, which increases the computational cost for VOP evaluation and makes online SAR monitoring or pulse optimization challenging. Arrays with interleaved rings showed the best results in the study.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a VOP compression
|2 Other
650 _ 7 |a body imaging at UHF MRI
|2 Other
650 _ 7 |a integrated transmit coil arrays
|2 Other
700 1 _ |a Orzada, Stephan
|0 P:(DE-He78)7985b432d853ab8929db0f1cb121667f
|b 1
|u dkfz
700 1 _ |a Flöser, Martina
|0 P:(DE-He78)cce06651cdcf863bbdcc14cc7b704c98
|b 2
700 1 _ |a Rietsch, Stefan H G
|b 3
700 1 _ |a Quick, Harald H
|b 4
700 1 _ |a Ladd, Mark E
|0 P:(DE-He78)022611a2317e4de40fd912e0a72293a8
|b 5
|u dkfz
700 1 _ |a Bitz, Andreas K
|b 6
773 _ _ |a 10.1002/nbm.4515
|0 PERI:(DE-600)2002003-X
|n 7
|p e4515
|t NMR in biomedicine
|v 34
|y 2021
|x 1099-1492
909 C O |o oai:inrepo02.dkfz.de:168724
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)bcbe9862276365dd99a98b48449fd046
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)7985b432d853ab8929db0f1cb121667f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)cce06651cdcf863bbdcc14cc7b704c98
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)022611a2317e4de40fd912e0a72293a8
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NMR BIOMED : 2019
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21