001     168739
005     20240229133614.0
024 7 _ |a 10.1002/cjp2.215
|2 doi
024 7 _ |a pmid:33949149
|2 pmid
037 _ _ |a DKFZ-2021-01033
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Lyskjaer, Iben
|0 0000-0003-3446-1182
|b 0
245 _ _ |a DNA methylation-based profiling of bone and soft tissue tumours: a validation study of the 'DKFZ Sarcoma Classifier'.
260 _ _ |a Chichester
|c 2021
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1625060272_24032
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2021 Jul;7(4):350-360
520 _ _ |a Diagnosing bone and soft tissue neoplasms remains challenging because of the large number of subtypes, many of which lack diagnostic biomarkers. DNA methylation profiles have proven to be a reliable basis for the classification of brain tumours and, following this success, a DNA methylation-based sarcoma classification tool from the Deutsches Krebsforschungszentrum (DKFZ) in Heidelberg has been developed. In this study, we assessed the performance of their classifier on DNA methylation profiles of an independent data set of 986 bone and soft tissue tumours and controls. We found that the 'DKFZ Sarcoma Classifier' was able to produce a diagnostic prediction for 55% of the 986 samples, with 83% of these predictions concordant with the histological diagnosis. On limiting the validation to the 820 cases with histological diagnoses for which the DKFZ Classifier was trained, 61% of cases received a prediction, and the histological diagnosis was concordant with the predicted methylation class in 88% of these cases, findings comparable to those reported in the DKFZ Classifier paper. The classifier performed best when diagnosing mesenchymal chondrosarcomas (CHSs, 88% sensitivity), chordomas (85% sensitivity), and fibrous dysplasia (83% sensitivity). Amongst the subtypes least often classified correctly were clear cell CHSs (14% sensitivity), malignant peripheral nerve sheath tumours (27% sensitivity), and pleomorphic liposarcomas (29% sensitivity). The classifier predictions resulted in revision of the histological diagnosis in six of our cases. We observed that, although a higher tumour purity resulted in a greater likelihood of a prediction being made, it did not correlate with classifier accuracy. Our results show that the DKFZ Classifier represents a powerful research tool for exploring the pathogenesis of sarcoma; with refinement, it has the potential to be a valuable diagnostic tool.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a bone
|2 Other
650 _ 7 |a classifier
|2 Other
650 _ 7 |a methylation profiling
|2 Other
650 _ 7 |a sarcoma
|2 Other
650 _ 7 |a soft tissue
|2 Other
700 1 _ |a De Noon, Solange
|0 0000-0002-6380-8117
|b 1
700 1 _ |a Tirabosco, Roberto
|b 2
700 1 _ |a Rocha, Ana Maia
|b 3
700 1 _ |a Lindsay, Daniel
|b 4
700 1 _ |a Amary, Fernanda
|b 5
700 1 _ |a Ye, Hongtao
|b 6
700 1 _ |a Schrimpf, Daniel
|0 P:(DE-He78)e54a1e0999c1d8c95869ef9188b794cc
|b 7
|u dkfz
700 1 _ |a Stichel, Damian
|0 P:(DE-He78)d20d08adc992abdb6ccffa1686f1ba17
|b 8
|u dkfz
700 1 _ |a Sill, Martin
|0 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
|b 9
|u dkfz
700 1 _ |a Koelsche, Christian
|0 0000-0001-8763-8864
|b 10
700 1 _ |a Pillay, Nischalan
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Von Deimling, Andreas
|0 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
|b 12
|u dkfz
700 1 _ |a Beck, Stephan
|b 13
700 1 _ |a Flanagan, Adrienne M
|0 0000-0002-2832-1303
|b 14
773 _ _ |a 10.1002/cjp2.215
|g p. cjp2.215
|0 PERI:(DE-600)2814357-7
|n 4
|p 350-360
|t The journal of pathology: clinical research
|v 7
|y 2021
|x 2056-4538
909 C O |o oai:inrepo02.dkfz.de:168739
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)e54a1e0999c1d8c95869ef9188b794cc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)d20d08adc992abdb6ccffa1686f1ba17
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Functional and structural genomics
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-08-21
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)
|0 LIC:(DE-HGF)CCBYNCNDNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-21
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-21
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-21
920 1 _ |0 I:(DE-He78)B300-20160331
|k B300
|l KKE Neuropathologie
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B300-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21