001     168741
005     20240229133615.0
024 7 _ |a 10.1093/noajnl/vdab030
|2 doi
024 7 _ |a pmid:33948561
|2 pmid
024 7 _ |a pmc:PMC8080134
|2 pmc
024 7 _ |a altmetric:104929329
|2 altmetric
037 _ _ |a DKFZ-2021-01035
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Nasir, Aishah
|b 0
245 _ _ |a ABCB1 inhibition provides a novel therapeutic target to block TWIST1-induced migration in medulloblastoma.
260 _ _ |a Oxford
|c 2021
|b Oxford University Press
264 _ 1 |3 online
|2 Crossref
|b Oxford University Press (OUP)
|c 2021-04-28
264 _ 1 |3 print
|2 Crossref
|b Oxford University Press (OUP)
|c 2021-01-01
264 _ 1 |3 print
|2 Crossref
|b Oxford University Press (OUP)
|c 2021-01-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1692701173_16345
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 3(1), 1–12, 2021
520 _ _ |a Therapeutic intervention in metastatic medulloblastoma is dependent on elucidating the underlying metastatic mechanism. We investigated whether an epithelial-mesenchymal transition (EMT)-like pathway could drive medulloblastoma metastasis.A 3D Basement Membrane Extract (3D-BME) model was used to investigate medulloblastoma cell migration. Cell line growth was quantified with AlamarBlue metabolic assays and the morphology assessed by time-lapse imaging. Gene expression was analyzed by qRT-PCR and protein expression by immunohistochemistry of patient tissue microarrays and mouse orthotopic xenografts. Chromatin immunoprecipitation was used to determine whether the EMT transcription factor TWIST1 bound to the promoter of the multidrug pump ABCB1. TWIST1 was overexpressed in MED6 cells by lentiviral transduction (MED6-TWIST1). Inhibition of ABCB1 was mediated by vardenafil, and TWIST1 expression was reduced by either Harmine or shRNA.Metastatic cells migrated to form large metabolically active aggregates, whereas non-tumorigenic/non-metastatic cells formed small aggregates with decreasing metabolic activity. TWIST1 expression was upregulated in the 3D-BME model. TWIST1 and ABCB1 were significantly associated with metastasis in patients (P = .041 and P = .04, respectively). High nuclear TWIST1 expression was observed in the invasive edge of the MED1 orthotopic model, and TWIST1 knockdown in cell lines was associated with reduced cell migration (P < .05). TWIST1 bound to the ABCB1 promoter (P = .03) and induced cell aggregation in metastatic and TWIST1-overexpressing, non-metastatic (MED6-TWIST1) cells, which was significantly attenuated by vardenafil (P < .05).In this study, we identified a TWIST1-ABCB1 signaling axis during medulloblastoma migration, which can be therapeutically targeted with the clinically approved ABCB1 inhibitor, vardenafil.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
542 _ _ |i 2021-04-28
|2 Crossref
|u http://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a 3D-BME model
|2 Other
650 _ 7 |a ABCB1
|2 Other
650 _ 7 |a Harmine
|2 Other
650 _ 7 |a TWIST1
|2 Other
650 _ 7 |a epithelial–mesenchymal transition
|2 Other
650 _ 7 |a medulloblastoma
|2 Other
700 1 _ |a Cardall, Alice
|b 1
700 1 _ |a Othman, Ramadhan T
|b 2
700 1 _ |a Nicolaou, Niovi
|b 3
700 1 _ |a Lourdusamy, Anbarasu
|b 4
700 1 _ |a Linke, Franziska
|b 5
700 1 _ |a Onion, David
|b 6
700 1 _ |a Ryzhova, Marina
|b 7
700 1 _ |a Cameron, Hanna
|b 8
700 1 _ |a Valente, Cara
|b 9
700 1 _ |a Ritchie, Alison
|b 10
700 1 _ |a Korshunov, Andrey
|0 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93
|b 11
|u dkfz
700 1 _ |a Pfister, Stefan M
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 12
|u dkfz
700 1 _ |a Grabowska, Anna M
|b 13
700 1 _ |a Kerr, Ian D
|b 14
700 1 _ |a Coyle, Beth
|0 0000-0003-2957-1862
|b 15
773 1 8 |a 10.1093/noajnl/vdab030
|b Oxford University Press (OUP)
|d 2021-01-01
|n 1
|3 journal-article
|2 Crossref
|t Neuro-Oncology Advances
|v 3
|y 2021
|x 2632-2498
773 _ _ |a 10.1093/noajnl/vdab030
|g Vol. 3, no. 1, p. vdab030
|0 PERI:(DE-600)3009682-0
|n 1
|p 1-12
|t Neuro-oncology advances
|v 3
|y 2021
|x 2632-2498
909 C O |p VDB
|o oai:inrepo02.dkfz.de:168741
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Functional and structural genomics
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-23T13:25:59Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-23T13:25:59Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-09-23T13:25:59Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-12
920 1 _ |0 I:(DE-He78)B320-20160331
|k B320
|l KKE Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B320-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1016/j.ejca.2004.12.017
|9 -- missing cx lookup --
|1 Taylor
|p 727 -
|2 Crossref
|t Eur J Cancer.
|v 41
|y 2005
999 C 5 |a 10.1200/JCO.2017.72.7842
|9 -- missing cx lookup --
|1 Ramaswamy
|p 2355 -
|2 Crossref
|t J Clin Oncol.
|v 35
|y 2017
999 C 5 |a 10.3171/2019.5.PEDS18381
|9 -- missing cx lookup --
|1 Juraschka
|p 353 -
|2 Crossref
|t J Neurosurg Pediatr.
|v 24
|y 2019
999 C 5 |a 10.1148/93.6.1351
|9 -- missing cx lookup --
|1 Chang
|p 1351 -
|2 Crossref
|t Radiology.
|v 93
|y 1969
999 C 5 |a 10.1016/j.cell.2018.01.038
|9 -- missing cx lookup --
|1 Garzia
|p 1050 -
|2 Crossref
|t Cell
|v 172
|y 2018
999 C 5 |a 10.1016/j.cell.2011.09.024
|9 -- missing cx lookup --
|1 Valastyan
|p 275 -
|2 Crossref
|t Cell.
|v 147
|y 2011
999 C 5 |a 10.1016/j.cell.2016.06.028
|9 -- missing cx lookup --
|1 Nieto
|p 21 -
|2 Crossref
|t Cell.
|v 166
|y 2016
999 C 5 |a 10.1186/1476-4598-9-194
|9 -- missing cx lookup --
|1 Mikheeva
|p 194 -
|2 Crossref
|t Mol Cancer.
|v 9
|y 2010
999 C 5 |a 10.1002/1878-0261.12085
|9 -- missing cx lookup --
|1 Kahlert
|p 860 -
|2 Crossref
|t Mol Oncol.
|v 11
|y 2017
999 C 5 |a 10.1186/2051-5960-2-10
|9 -- missing cx lookup --
|1 Merve
|p 10 -
|2 Crossref
|t Acta Neuropathol Commun.
|v 2
|y 2014
999 C 5 |a 10.1002/stem.1401
|9 -- missing cx lookup --
|1 Manoranjan
|p 1266 -
|2 Crossref
|t Stem Cells.
|v 31
|y 2013
999 C 5 |a 10.1093/neuonc/nor109
|9 -- missing cx lookup --
|1 Asuthkar
|p 1059 -
|2 Crossref
|t Neuro Oncol.
|v 13
|y 2011
999 C 5 |a 10.1038/srep27012
|9 -- missing cx lookup --
|1 Svalina
|p 27012 -
|2 Crossref
|t Sci Rep.
|v 6
|y 2016
999 C 5 |a 10.1007/s10585-010-9337-9
|9 -- missing cx lookup --
|1 Yuan
|p 481 -
|2 Crossref
|t Clin Exp Metastasis.
|v 27
|y 2010
999 C 5 |1 Gupta
|y 2011
|2 Crossref
|o Gupta 2011
999 C 5 |a 10.18632/oncotarget.12500
|9 -- missing cx lookup --
|1 Saunders
|p 24224 -
|2 Crossref
|t Oncotarget.
|v 8
|y 2017
999 C 5 |a 10.1158/1535-7163.MCT-15-0598
|9 -- missing cx lookup --
|1 Onion
|p 753 -
|2 Crossref
|t Mol Cancer Ther.
|v 15
|y 2016
999 C 5 |a 10.1016/j.canlet.2007.03.012
|9 -- missing cx lookup --
|1 Sasser
|p 255 -
|2 Crossref
|t Cancer Lett.
|v 254
|y 2007
999 C 5 |a 10.1016/S1286-0115(05)83235-7
|9 -- missing cx lookup --
|1 Weller
|p 22 -
|2 Crossref
|t Morphologie.
|v 89
|y 2005
999 C 5 |a 10.1186/2051-5960-2-57
|9 -- missing cx lookup --
|1 Othman
|p 57 -
|2 Crossref
|t Acta Neuropathol Commun.
|v 2
|y 2014
999 C 5 |a 10.1007/s00401-012-1070-9
|9 -- missing cx lookup --
|1 Dubuc
|p 373 -
|2 Crossref
|t Acta Neuropathol.
|v 125
|y 2013
999 C 5 |a 10.1093/neuonc/noq144
|9 -- missing cx lookup --
|1 Hussein
|p 70 -
|2 Crossref
|t Neuro Oncol.
|v 13
|y 2011
999 C 5 |a 10.1016/j.tiv.2016.09.007
|9 -- missing cx lookup --
|1 Ivanov
|p 88 -
|2 Crossref
|t Toxicol In Vitro.
|v 37
|y 2016
999 C 5 |1 Keles
|y 1995
|2 Crossref
|o Keles 1995
999 C 5 |a 10.1016/0092-8674(92)90204-P
|9 -- missing cx lookup --
|1 Snyder
|p 33 -
|2 Crossref
|t Cell.
|v 68
|y 1992
999 C 5 |a 10.1038/bjc.2012.377
|9 -- missing cx lookup --
|1 Rogers
|p 1144 -
|2 Crossref
|t Br J Cancer.
|v 107
|y 2012
999 C 5 |a 10.1097/00005072-198511000-00005
|9 -- missing cx lookup --
|1 Friedman
|p 592 -
|2 Crossref
|t J Neuropathol Exp Neurol.
|v 44
|y 1985
999 C 5 |1 He
|y 1991
|2 Crossref
|o He 1991
999 C 5 |a 10.1109/83.366472
|9 -- missing cx lookup --
|1 Yen
|p 370 -
|2 Crossref
|t IEEE Trans Image Process.
|v 4
|y 1995
999 C 5 |a 10.1038/srep15205
|9 -- missing cx lookup --
|1 Puliafito
|p 15205 -
|2 Crossref
|t Sci Rep.
|v 5
|y 2015
999 C 5 |a 10.1038/onc.2014.37
|9 -- missing cx lookup --
|1 Buss
|p 1126 -
|2 Crossref
|t Oncogene.
|v 34
|y 2015
999 C 5 |a 10.1093/neuonc/nos001
|9 -- missing cx lookup --
|1 Buss
|p 440 -
|2 Crossref
|t Neuro Oncol.
|v 14
|y 2012
999 C 5 |a 10.1038/nrm3758
|9 -- missing cx lookup --
|1 Lamouille
|p 178 -
|2 Crossref
|t Nat Rev Mol Cell Biol.
|v 15
|y 2014
999 C 5 |a 10.1038/nature22973
|9 -- missing cx lookup --
|1 Northcott
|p 311 -
|2 Crossref
|t Nature.
|v 547
|y 2017
999 C 5 |a 10.1007/s10048-006-0032-6
|9 -- missing cx lookup --
|1 Roth
|p 67 -
|2 Crossref
|t Neurogenetics.
|v 7
|y 2006
999 C 5 |a 10.1158/1541-7786.MCR-17-0298
|9 -- missing cx lookup --
|1 Yochum
|p 1764 -
|2 Crossref
|t Mol Cancer Res.
|v 15
|y 2017
999 C 5 |a 10.1371/journal.pone.0019329
|9 -- missing cx lookup --
|1 Ding
|p e19329 -
|2 Crossref
|t PLoS One.
|v 6
|y 2011
999 C 5 |a 10.1007/s00401-016-1569-6
|9 -- missing cx lookup --
|1 Ramaswamy
|p 821 -
|2 Crossref
|t Acta Neuropathol.
|v 131
|y 2016
999 C 5 |a 10.1016/j.molonc.2007.02.004
|9 -- missing cx lookup --
|1 Kenny
|p 84 -
|2 Crossref
|t Mol Oncol.
|v 1
|y 2007
999 C 5 |a 10.1371/journal.pone.0059689
|9 -- missing cx lookup --
|1 Luca
|p e59689 -
|2 Crossref
|t PLoS One.
|v 8
|y 2013
999 C 5 |a 10.1038/onc.2016.96
|9 -- missing cx lookup --
|1 Wen
|p 5552 -
|2 Crossref
|t Oncogene.
|v 35
|y 2016
999 C 5 |a 10.1038/sj.onc.1210729
|9 -- missing cx lookup --
|1 Rayter
|p 1036 -
|2 Crossref
|t Oncogene.
|v 27
|y 2008
999 C 5 |a 10.1016/j.cell.2004.06.006
|9 -- missing cx lookup --
|1 Yang
|p 927 -
|2 Crossref
|t Cell.
|v 117
|y 2004
999 C 5 |a 10.1038/cddis.2011.61
|9 -- missing cx lookup --
|1 Saxena
|p e179 -
|2 Crossref
|t Cell Death Dis.
|v 2
|y 2011
999 C 5 |a 10.3892/or.2012.1633
|9 -- missing cx lookup --
|1 Zhu
|p 1027 -
|2 Crossref
|t Oncol Rep.
|v 27
|y 2012
999 C 5 |a 10.3892/mmr.2014.2212
|9 -- missing cx lookup --
|1 Lu
|p 53 -
|2 Crossref
|t Mol Med Rep.
|v 10
|y 2014
999 C 5 |a 10.1073/pnas.95.12.6924
|9 -- missing cx lookup --
|1 Randolph
|p 6924 -
|2 Crossref
|t Proc Natl Acad Sci U S A.
|v 95
|y 1998
999 C 5 |a 10.1158/0008-5472.CAN-04-3478
|9 -- missing cx lookup --
|1 Miletti-González
|p 6660 -
|2 Crossref
|t Cancer Res.
|v 65
|y 2005
999 C 5 |a 10.1038/sj.jid.5701082
|9 -- missing cx lookup --
|1 Colone
|p 957 -
|2 Crossref
|t J Invest Dermatol.
|v 128
|y 2008
999 C 5 |a 10.1038/ijir.2009.21
|9 -- missing cx lookup --
|1 Aversa
|p 221 -
|2 Crossref
|t Int J Impot Res.
|v 21
|y 2009


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21