000168837 001__ 168837
000168837 005__ 20240229133620.0
000168837 0247_ $$2doi$$a10.1002/nbm.4541
000168837 0247_ $$2pmid$$apmid:33978270
000168837 0247_ $$2ISSN$$a0952-3480
000168837 0247_ $$2ISSN$$a1099-1492
000168837 037__ $$aDKFZ-2021-01088
000168837 041__ $$aEnglish
000168837 082__ $$a610
000168837 1001_ $$00000-0001-7608-0869$$aAvdievich, Nikolai I$$b0
000168837 245__ $$aFolded-end dipole transceiver array for human whole-brain imaging at 7 T.
000168837 260__ $$aNew York, NY$$bWiley$$c2021
000168837 3367_ $$2DRIVER$$aarticle
000168837 3367_ $$2DataCite$$aOutput Types/Journal article
000168837 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625143443_23645
000168837 3367_ $$2BibTeX$$aARTICLE
000168837 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000168837 3367_ $$00$$2EndNote$$aJournal Article
000168837 500__ $$a2021 May 12;e4541
000168837 520__ $$aThe advancement of clinical applications of ultrahigh field (UHF) MRI depends heavily on advances in technology, including the development of new radiofrequency (RF) coil designs. Currently, the number of commercially available 7 T head RF coils is rather limited, implying a need to develop novel RF head coil designs that offer superior transmit and receive performance. RF coils to be used for clinical applications must be robust and reliable. In particular, for transmit arrays, if a transmit channel fails the local specific absorption rate may increase, significantly increasing local tissue heating. Recently, dipole antennas have been proposed and used to design UHF head transmit and receive arrays. The dipole provides a unique simplicity while offering comparable transmit efficiency and signal-to-noise ratio with the conventional loop design. Recently, we developed a novel array design in our laboratory using a folded-end dipole antenna. In this work, we developed, constructed and evaluated an eight-element transceiver bent folded-end dipole array for human head imaging at 7 T. Driven in the quadrature circularly polarized mode, the array demonstrated more than 20% higher transmit efficiency and significantly better whole-brain coverage than that provided by a widely used commercial array. In addition, we evaluated passive dipole antennas for decoupling the proposed array. We demonstrated that in contrast to the common unfolded dipole array, the passive dipoles moved away from the sample not only minimize coupling between the adjacent folded-end active dipoles but also produce practically no destructive interference with the quadrature mode of the array.
000168837 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000168837 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000168837 650_7 $$2Other$$aarray optimization
000168837 650_7 $$2Other$$adecoupling
000168837 650_7 $$2Other$$afolded-end dipole
000168837 650_7 $$2Other$$ahuman head imaging
000168837 650_7 $$2Other$$atransceiver array
000168837 650_7 $$2Other$$aultrahigh field MRI
000168837 7001_ $$aSolomakha, Georgiy$$b1
000168837 7001_ $$aRuhm, Loreen$$b2
000168837 7001_ $$aNikulin, Anton V$$b3
000168837 7001_ $$0P:(DE-He78)5ceba3ebae6ecd5e27fa39a0365ff08e$$aMagill, Arthur$$b4$$udkfz
000168837 7001_ $$aScheffler, Klaus$$b5
000168837 773__ $$0PERI:(DE-600)2002003-X$$a10.1002/nbm.4541$$pe4541$$tNMR in biomedicine$$v12$$x1099-1492$$y2021
000168837 909CO $$ooai:inrepo02.dkfz.de:168837$$pVDB
000168837 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5ceba3ebae6ecd5e27fa39a0365ff08e$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000168837 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000168837 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000168837 9141_ $$y2021
000168837 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000168837 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000168837 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNMR BIOMED : 2019$$d2021-01-28
000168837 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000168837 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000168837 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000168837 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-28
000168837 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000168837 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000168837 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000168837 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000168837 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000168837 980__ $$ajournal
000168837 980__ $$aVDB
000168837 980__ $$aI:(DE-He78)E020-20160331
000168837 980__ $$aUNRESTRICTED