001     168837
005     20240229133620.0
024 7 _ |a 10.1002/nbm.4541
|2 doi
024 7 _ |a pmid:33978270
|2 pmid
024 7 _ |a 0952-3480
|2 ISSN
024 7 _ |a 1099-1492
|2 ISSN
037 _ _ |a DKFZ-2021-01088
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Avdievich, Nikolai I
|0 0000-0001-7608-0869
|b 0
245 _ _ |a Folded-end dipole transceiver array for human whole-brain imaging at 7 T.
260 _ _ |a New York, NY
|c 2021
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1625143443_23645
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2021 May 12;e4541
520 _ _ |a The advancement of clinical applications of ultrahigh field (UHF) MRI depends heavily on advances in technology, including the development of new radiofrequency (RF) coil designs. Currently, the number of commercially available 7 T head RF coils is rather limited, implying a need to develop novel RF head coil designs that offer superior transmit and receive performance. RF coils to be used for clinical applications must be robust and reliable. In particular, for transmit arrays, if a transmit channel fails the local specific absorption rate may increase, significantly increasing local tissue heating. Recently, dipole antennas have been proposed and used to design UHF head transmit and receive arrays. The dipole provides a unique simplicity while offering comparable transmit efficiency and signal-to-noise ratio with the conventional loop design. Recently, we developed a novel array design in our laboratory using a folded-end dipole antenna. In this work, we developed, constructed and evaluated an eight-element transceiver bent folded-end dipole array for human head imaging at 7 T. Driven in the quadrature circularly polarized mode, the array demonstrated more than 20% higher transmit efficiency and significantly better whole-brain coverage than that provided by a widely used commercial array. In addition, we evaluated passive dipole antennas for decoupling the proposed array. We demonstrated that in contrast to the common unfolded dipole array, the passive dipoles moved away from the sample not only minimize coupling between the adjacent folded-end active dipoles but also produce practically no destructive interference with the quadrature mode of the array.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a array optimization
|2 Other
650 _ 7 |a decoupling
|2 Other
650 _ 7 |a folded-end dipole
|2 Other
650 _ 7 |a human head imaging
|2 Other
650 _ 7 |a transceiver array
|2 Other
650 _ 7 |a ultrahigh field MRI
|2 Other
700 1 _ |a Solomakha, Georgiy
|b 1
700 1 _ |a Ruhm, Loreen
|b 2
700 1 _ |a Nikulin, Anton V
|b 3
700 1 _ |a Magill, Arthur
|0 P:(DE-He78)5ceba3ebae6ecd5e27fa39a0365ff08e
|b 4
|u dkfz
700 1 _ |a Scheffler, Klaus
|b 5
773 _ _ |a 10.1002/nbm.4541
|0 PERI:(DE-600)2002003-X
|p e4541
|t NMR in biomedicine
|v 12
|y 2021
|x 1099-1492
909 C O |o oai:inrepo02.dkfz.de:168837
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)5ceba3ebae6ecd5e27fa39a0365ff08e
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NMR BIOMED : 2019
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21