001     168960
005     20240229133633.0
024 7 _ |a 10.1038/s41391-020-00311-2
|2 doi
024 7 _ |a pmid:33420416
|2 pmid
024 7 _ |a 1365-7852
|2 ISSN
024 7 _ |a 1476-5608
|2 ISSN
024 7 _ |a altmetric:97336459
|2 altmetric
037 _ _ |a DKFZ-2021-01162
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Karunamuni, Roshan A
|0 0000-0001-8723-8123
|b 0
245 _ _ |a Additional SNPs improve risk stratification of a polygenic hazard score for prostate cancer.
260 _ _ |a Basingstoke
|c 2021
|b Stockton Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1624886290_24746
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Polygenic hazard scores (PHS) can identify individuals with increased risk of prostate cancer. We estimated the benefit of additional SNPs on performance of a previously validated PHS (PHS46).180 SNPs, shown to be previously associated with prostate cancer, were used to develop a PHS model in men with European ancestry. A machine-learning approach, LASSO-regularized Cox regression, was used to select SNPs and to estimate their coefficients in the training set (75,596 men). Performance of the resulting model was evaluated in the testing/validation set (6,411 men) with two metrics: (1) hazard ratios (HRs) and (2) positive predictive value (PPV) of prostate-specific antigen (PSA) testing. HRs were estimated between individuals with PHS in the top 5% to those in the middle 40% (HR95/50), top 20% to bottom 20% (HR80/20), and bottom 20% to middle 40% (HR20/50). PPV was calculated for the top 20% (PPV80) and top 5% (PPV95) of PHS as the fraction of individuals with elevated PSA that were diagnosed with clinically significant prostate cancer on biopsy.166 SNPs had non-zero coefficients in the Cox model (PHS166). All HR metrics showed significant improvements for PHS166 compared to PHS46: HR95/50 increased from 3.72 to 5.09, HR80/20 increased from 6.12 to 9.45, and HR20/50 decreased from 0.41 to 0.34. By contrast, no significant differences were observed in PPV of PSA testing for clinically significant prostate cancer.Incorporating 120 additional SNPs (PHS166 vs PHS46) significantly improved HRs for prostate cancer, while PPV of PSA testing remained the same.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
700 1 _ |a Huynh-Le, Minh-Phuong
|0 0000-0002-5025-4709
|b 1
700 1 _ |a Fan, Chun C
|b 2
700 1 _ |a Thompson, Wesley
|b 3
700 1 _ |a Eeles, Rosalind A
|0 0000-0002-3698-6241
|b 4
700 1 _ |a Kote-Jarai, Zsofia
|b 5
700 1 _ |a Muir, Kenneth
|0 0000-0001-6429-988X
|b 6
700 1 _ |a Lophatananon, Artitaya
|b 7
700 1 _ |a UKGPCS collaborators
|b 8
|e Collaboration Author
700 1 _ |a Schleutker, Johanna
|0 0000-0002-1863-0305
|b 9
700 1 _ |a Pashayan, Nora
|b 10
700 1 _ |a Batra, Jyotsna
|0 0000-0003-4646-6247
|b 11
700 1 _ |a BioResource, APCB
|b 12
|e Collaboration Author
700 1 _ |a Grönberg, Henrik
|b 13
700 1 _ |a Walsh, Eleanor I
|b 14
700 1 _ |a Turner, Emma L
|b 15
700 1 _ |a Lane, Athene
|b 16
700 1 _ |a Martin, Richard M
|0 0000-0002-7992-7719
|b 17
700 1 _ |a Neal, David E
|b 18
700 1 _ |a Donovan, Jenny L
|b 19
700 1 _ |a Hamdy, Freddie C
|b 20
700 1 _ |a Nordestgaard, Børge G
|b 21
700 1 _ |a Tangen, Catherine M
|b 22
700 1 _ |a MacInnis, Robert J
|b 23
700 1 _ |a Wolk, Alicja
|b 24
700 1 _ |a Albanes, Demetrius
|b 25
700 1 _ |a Haiman, Christopher A
|b 26
700 1 _ |a Travis, Ruth C
|b 27
700 1 _ |a Stanford, Janet L
|b 28
700 1 _ |a Mucci, Lorelei A
|b 29
700 1 _ |a West, Catharine M L
|b 30
700 1 _ |a Nielsen, Sune F
|b 31
700 1 _ |a Kibel, Adam S
|b 32
700 1 _ |a Wiklund, Fredrik
|0 0000-0002-4623-0544
|b 33
700 1 _ |a Cussenot, Olivier
|b 34
700 1 _ |a Berndt, Sonja I
|b 35
700 1 _ |a Koutros, Stella
|b 36
700 1 _ |a Sørensen, Karina Dalsgaard
|0 0000-0002-4902-5490
|b 37
700 1 _ |a Cybulski, Cezary
|b 38
700 1 _ |a Grindedal, Eli Marie
|b 39
700 1 _ |a Park, Jong Y
|b 40
700 1 _ |a Ingles, Sue A
|b 41
700 1 _ |a Maier, Christiane
|b 42
700 1 _ |a Hamilton, Robert J
|b 43
700 1 _ |a Rosenstein, Barry S
|b 44
700 1 _ |a Vega, Ana
|b 45
700 1 _ |a Committee, IMPACT Study Steering
|b 46
700 1 _ |a Collaborators
|b 47
|e Collaboration Author
700 1 _ |a Kogevinas, Manolis
|b 48
700 1 _ |a Penney, Kathryn L
|b 49
700 1 _ |a Teixeira, Manuel R
|0 0000-0002-4896-5982
|b 50
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 51
|u dkfz
700 1 _ |a John, Esther M
|b 52
700 1 _ |a Kaneva, Radka
|b 53
700 1 _ |a Logothetis, Christopher J
|b 54
700 1 _ |a Neuhausen, Susan L
|b 55
700 1 _ |a Razack, Azad
|b 56
700 1 _ |a Newcomb, Lisa F
|b 57
700 1 _ |a Investigators, Canary PASS
|b 58
|e Collaboration Author
700 1 _ |a Gamulin, Marija
|0 0000-0003-2431-7910
|b 59
700 1 _ |a Usmani, Nawaid
|b 60
700 1 _ |a Claessens, Frank
|b 61
700 1 _ |a Gago-Dominguez, Manuela
|b 62
700 1 _ |a Townsend, Paul A
|b 63
700 1 _ |a Roobol, Monique J
|0 0000-0001-6967-1708
|b 64
700 1 _ |a Zheng, Wei
|b 65
700 1 _ |a Committee, Profile Study Steering
|b 66
|e Collaboration Author
700 1 _ |a Mills, Ian G
|b 67
700 1 _ |a Andreassen, Ole A
|0 0000-0002-4461-3568
|b 68
700 1 _ |a Dale, Anders M
|b 69
700 1 _ |a Seibert, Tyler M
|0 0000-0002-4089-7399
|b 70
700 1 _ |a Consortium, PRACTICAL
|b 71
|e Collaboration Author
773 _ _ |a 10.1038/s41391-020-00311-2
|g Vol. 24, no. 2, p. 532 - 541
|0 PERI:(DE-600)2008886-3
|n 2
|p 532 - 541
|t Prostate cancer and prostatic diseases
|v 24
|y 2021
|x 1476-5608
909 C O |o oai:inrepo02.dkfz.de:168960
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 51
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PROSTATE CANCER P D : 2019
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-01-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-26
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21