001     169017
005     20240229133635.0
024 7 _ |a 10.1097/RLI.0000000000000791
|2 doi
024 7 _ |a pmid:34049336
|2 pmid
024 7 _ |a 0020-9996
|2 ISSN
024 7 _ |a 1536-0210
|2 ISSN
024 7 _ |a altmetric:106681702
|2 altmetric
037 _ _ |a DKFZ-2021-01185
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Netzer, Nils
|0 P:(DE-He78)32c69a3bed6c75b378ef19ad39a74572
|b 0
|e First author
245 _ _ |a Fully Automatic Deep Learning in Bi-institutional Prostate Magnetic Resonance Imaging: Effects of Cohort Size and Heterogeneity.
260 _ _ |a [s.l.]
|c 2021
|b Ovid
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642584214_1940
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E010#LA:E010# /December 2021 - Volume 56 - Issue 12 - p 799-808
520 _ _ |a The potential of deep learning to support radiologist prostate magnetic resonance imaging (MRI) interpretation has been demonstrated.The aim of this study was to evaluate the effects of increased and diversified training data (TD) on deep learning performance for detection and segmentation of clinically significant prostate cancer-suspicious lesions.In this retrospective study, biparametric (T2-weighted and diffusion-weighted) prostate MRI acquired with multiple 1.5-T and 3.0-T MRI scanners in consecutive men was used for training and testing of prostate segmentation and lesion detection networks. Ground truth was the combination of targeted and extended systematic MRI-transrectal ultrasound fusion biopsies, with significant prostate cancer defined as International Society of Urological Pathology grade group greater than or equal to 2. U-Nets were internally validated on full, reduced, and PROSTATEx-enhanced training sets and subsequently externally validated on the institutional test set and the PROSTATEx test set. U-Net segmentation was calibrated to clinically desired levels in cross-validation, and test performance was subsequently compared using sensitivities, specificities, predictive values, and Dice coefficient.One thousand four hundred eighty-eight institutional examinations (median age, 64 years; interquartile range, 58-70 years) were temporally split into training (2014-2017, 806 examinations, supplemented by 204 PROSTATEx examinations) and test (2018-2020, 682 examinations) sets. In the test set, Prostate Imaging-Reporting and Data System (PI-RADS) cutoffs greater than or equal to 3 and greater than or equal to 4 on a per-patient basis had sensitivity of 97% (241/249) and 90% (223/249) at specificity of 19% (82/433) and 56% (242/433), respectively. The full U-Net had corresponding sensitivity of 97% (241/249) and 88% (219/249) with specificity of 20% (86/433) and 59% (254/433), not statistically different from PI-RADS (P > 0.3 for all comparisons). U-Net trained using a reduced set of 171 consecutive examinations achieved inferior performance (P < 0.001). PROSTATEx training enhancement did not improve performance. Dice coefficients were 0.90 for prostate and 0.42/0.53 for MRI lesion segmentation at PI-RADS category 3/4 equivalents.In a large institutional test set, U-Net confirms similar performance to clinical PI-RADS assessment and benefits from more TD, with neither institutional nor PROSTATEx performance improved by adding multiscanner or bi-institutional TD.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
700 1 _ |a Weißer, Cedric
|0 P:(DE-He78)119873a14bddcea13d0c7c2d27bc3f4b
|b 1
700 1 _ |a Schelb, Patrick
|0 P:(DE-He78)4b5e5faa688c6b833c70b6777f91f662
|b 2
700 1 _ |a Wang, Xianfeng
|0 P:(DE-He78)aec14a1077ed145f9ebe9de1d50905b0
|b 3
700 1 _ |a Qin, Xiaoyan
|0 P:(DE-He78)a5f2932521a52b287143c4177c8e3d1f
|b 4
700 1 _ |a Görtz, Magdalena
|b 5
700 1 _ |a Schütz, Viktoria
|b 6
700 1 _ |a Radtke, Jan Philipp
|0 P:(DE-He78)79897f8897ff77676549d9895258a0f2
|b 7
700 1 _ |a Hielscher, Thomas
|0 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
|b 8
700 1 _ |a Schwab, Constantin
|b 9
700 1 _ |a Stenzinger, Albrecht
|b 10
700 1 _ |a Kuder, Tristan Anselm
|0 P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6
|b 11
|u dkfz
700 1 _ |a Gnirs, Regula
|0 P:(DE-He78)77bc493068847c689d894d2eda891c0c
|b 12
700 1 _ |a Hohenfellner, Markus
|b 13
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 14
700 1 _ |a Maier-Hein, Klaus H
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 15
700 1 _ |a Bonekamp, David
|0 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
|b 16
|e Last author
773 _ _ |a 10.1097/RLI.0000000000000791
|g Vol. Publish Ahead of Print
|0 PERI:(DE-600)2041543-6
|n 12
|p 799-808
|t Investigative radiology
|v 56
|y 2021
|x 0020-9996
909 C O |p VDB
|o oai:inrepo02.dkfz.de:169017
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)32c69a3bed6c75b378ef19ad39a74572
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)119873a14bddcea13d0c7c2d27bc3f4b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)4b5e5faa688c6b833c70b6777f91f662
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)aec14a1077ed145f9ebe9de1d50905b0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)a5f2932521a52b287143c4177c8e3d1f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)79897f8897ff77676549d9895258a0f2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)77bc493068847c689d894d2eda891c0c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
914 1 _ |y 2021
915 _ _ |a Allianz-Lizenz
|0 StatID:(DE-HGF)0410
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INVEST RADIOL : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INVEST RADIOL : 2019
|d 2021-01-27
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 2
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 3
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21