000169036 001__ 169036
000169036 005__ 20240229133637.0
000169036 0247_ $$2doi$$a10.1016/j.ijrobp.2021.05.126
000169036 0247_ $$2pmid$$apmid:34058258
000169036 0247_ $$2ISSN$$a0360-3016
000169036 0247_ $$2ISSN$$a1879-355X
000169036 0247_ $$2altmetric$$aaltmetric:106647475
000169036 037__ $$aDKFZ-2021-01203
000169036 041__ $$aEnglish
000169036 082__ $$a610
000169036 1001_ $$0P:(DE-He78)3716114b005e9b4e533c7f3cd0f4f253$$aBennan, Amit Ben Antony$$b0$$eFirst author$$udkfz
000169036 245__ $$aJoint optimization of photon - carbon ion treatments for Glioblastoma.
000169036 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000169036 3367_ $$2DRIVER$$aarticle
000169036 3367_ $$2DataCite$$aOutput Types/Journal article
000169036 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1634306758_29198
000169036 3367_ $$2BibTeX$$aARTICLE
000169036 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000169036 3367_ $$00$$2EndNote$$aJournal Article
000169036 500__ $$a#EA:E040#LA:E040#/2021 Oct 1;111(2):559-572
000169036 520__ $$aCarbon ions are radiobiologically more effective than photons and are beneficial for treating radioresistant gross tumour volumes (GTV). However, due to a reduced fractionation effect, they may be disadvantageous for treating infiltrative tumours, where healthy tissue inside the clinical target volume (CTV) must be protected through fractionation. This work addresses the question: what is the ideal combined photon-carbon ion fluence distribution for treating infiltrative tumours given a specific fraction allocation between photons and carbon ions?We present a method to simultaneously optimize sequentially delivered intensity modulated photon (IMRT) and carbon ion (CIRT) treatments based on cumulative biological effect, incorporating both the variable RBE of carbon ions and the fractionation effect within the linear quadratic model. The method is demonstrated for six Glioblastoma patients in comparison to current clinical standard of independently optimized CIRT - IMRT plans.Compared to the reference plan, joint optimization strategies yield inhomogeneous photon and carbon ion dose distributions that cumulatively deliver a homogeneous biological effect distribution. In the optimal distributions, the dose to CTV is mostly delivered by photons while carbon ions are restricted to the GTV with variations depending on tumour size and location. Improvements in conformity of high dose regions are reflected by a mean EQD2 reduction of 3.29 ± 1.22 Gy in a dose fall-off margin around the CTV. Carbon ions may deliver higher doses to the center of the GTV, while photon contributions are increased at interfaces with CTV and critical structures. This results in a mean EQD2 reduction of 8.3 ± 2.28 Gy, where the brainstem abuts the target volumes.We have developed a biophysical model to optimize combined photon-carbon ion treatments. For six glioblastoma patient cases, we show that our approach results in a more targeted application of carbon ions that (1) reduces dose in normal tissues within the target volume which can only be protected through fractionation (2) boosts central target volume regions in order to reduce integral dose. Joint optimization of IMRT - CIRT treatments enable the exploration of a new spectrum of plans that can better address physical and radiobiological treatment planning challenges.
000169036 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000169036 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000169036 7001_ $$aUnkelbach, Jan$$b1
000169036 7001_ $$0P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aWahl, Niklas$$b2$$udkfz
000169036 7001_ $$0P:(DE-He78)a49f791f44268db8fc4e1e3804d46ffd$$aSalome, Patrick$$b3$$udkfz
000169036 7001_ $$0P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aBangert, Mark$$b4$$eLast author$$udkfz
000169036 773__ $$0PERI:(DE-600)1500486-7$$a10.1016/j.ijrobp.2021.05.126$$gp. S0360301621006684$$n2$$p559-572$$tInternational journal of radiation oncology, biology, physics$$v111$$x0360-3016$$y2021
000169036 909CO $$ooai:inrepo02.dkfz.de:169036$$pVDB
000169036 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3716114b005e9b4e533c7f3cd0f4f253$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000169036 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000169036 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a49f791f44268db8fc4e1e3804d46ffd$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000169036 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000169036 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000169036 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000169036 9141_ $$y2021
000169036 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000169036 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000169036 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000169036 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000169036 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000169036 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27
000169036 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-01-27
000169036 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000169036 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000169036 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000169036 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J RADIAT ONCOL : 2019$$d2021-01-27
000169036 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000169036 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000169036 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J RADIAT ONCOL : 2019$$d2021-01-27
000169036 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000169036 9201_ $$0I:(DE-He78)E050-20160331$$kE050$$lE050 KKE Strahlentherapie$$x1
000169036 980__ $$ajournal
000169036 980__ $$aVDB
000169036 980__ $$aI:(DE-He78)E040-20160331
000169036 980__ $$aI:(DE-He78)E050-20160331
000169036 980__ $$aUNRESTRICTED