000169059 001__ 169059
000169059 005__ 20240229133637.0
000169059 0247_ $$2doi$$a10.1002/mrm.28873
000169059 0247_ $$2pmid$$apmid:34061397
000169059 0247_ $$2ISSN$$a0740-3194
000169059 0247_ $$2ISSN$$a1522-2594
000169059 037__ $$aDKFZ-2021-01217
000169059 041__ $$aEnglish
000169059 082__ $$a610
000169059 1001_ $$0P:(DE-He78)0ad4af74a6b337e282ad0281595593bc$$aKratzer, Fabian$$b0$$eFirst author$$udkfz
000169059 245__ $$a3D sodium (23 Na) magnetic resonance fingerprinting for time-efficient relaxometric mapping.
000169059 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2021
000169059 3367_ $$2DRIVER$$aarticle
000169059 3367_ $$2DataCite$$aOutput Types/Journal article
000169059 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1634565890_21236
000169059 3367_ $$2BibTeX$$aARTICLE
000169059 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000169059 3367_ $$00$$2EndNote$$aJournal Article
000169059 500__ $$a#EA:E020#LA:E020#/ 2021 Nov;86(5):2412-2425
000169059 520__ $$aTo develop a framework for 3D sodium (23 Na) MR fingerprinting (MRF), based on irreducible spherical tensor operators with tailored flip angle (FA) pattern and time-efficient data acquisition for simultaneous quantification of T1 , T 2 l ∗ , T 2 s ∗ , and T 2 ∗ in addition to ΔB0 .23 Na-MRF was implemented in a 3D sequence and irreducible spherical tensor operators were exploited in the simulations. Furthermore, the Cramér Rao lower bound was used to optimize the flip angle pattern. A combination of single and double echo readouts was implemented to increase the readout efficiency. A study was conducted to compare results in a multicompartment phantom acquired with MRF and reference methods. Finally, the relaxation times in the human brain were measured in four healthy volunteers.Phantom experiments revealed a mean difference of 1.0% between relaxation times acquired with MRF and results determined with the reference methods. Simultaneous quantification of the longitudinal and transverse relaxation times in the human brain was possible within 32 min using 3D 23 Na-MRF with a nominal resolution of (5 mm)3 . In vivo measurements in four volunteers yielded average relaxation times of: T1,brain = (35.0 ± 3.2) ms, T 2 l , brain ∗ = (29.3 ± 3.8) ms and T 2 s , brain ∗ = (5.5 ± 1.3) ms in brain tissue, whereas T1,CSF = (61.9 ± 2.8) ms and T 2 , CSF ∗ = (46.3 ± 4.5) ms was found in cerebrospinal fluid.The feasibility of in vivo 3D relaxometric sodium mapping within roughly ½ h is demonstrated using MRF in the human brain, moving sodium relaxometric mapping toward clinically relevant measurement times.
000169059 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000169059 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000169059 650_7 $$2Other$$a7 Tesla
000169059 650_7 $$2Other$$aCramér Rao lower bound
000169059 650_7 $$2Other$$aX-nuclei
000169059 650_7 $$2Other$$amagnetic resonance fingerprinting
000169059 650_7 $$2Other$$arelaxometry
000169059 650_7 $$2Other$$asodium
000169059 7001_ $$0P:(DE-He78)6f29c4a184536f50b8629af3480c5932$$aFlassbeck, Sebastian$$b1
000169059 7001_ $$0P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e$$aSchmitter, Sebastian$$b2$$udkfz
000169059 7001_ $$aWilferth, Tobias$$b3
000169059 7001_ $$0P:(DE-He78)5ceba3ebae6ecd5e27fa39a0365ff08e$$aMagill, Arthur$$b4$$udkfz
000169059 7001_ $$0P:(DE-He78)2a87a11b02b8b69a8607d707f436330a$$aKnowles, Benjamin R$$b5$$udkfz
000169059 7001_ $$0P:(DE-He78)3c42114fa37390cfdc976bf0a9fcfb67$$aPlatt, Tanja$$b6$$udkfz
000169059 7001_ $$0P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aBachert, Peter$$b7$$udkfz
000169059 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark E$$b8$$udkfz
000169059 7001_ $$0P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aNagel, Armin$$b9$$eLast author$$udkfz
000169059 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.28873$$gp. mrm.28873$$n5$$p2412-2425$$tMagnetic resonance in medicine$$v86$$x1522-2594$$y2021
000169059 909CO $$ooai:inrepo02.dkfz.de:169059$$pVDB
000169059 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0ad4af74a6b337e282ad0281595593bc$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000169059 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6f29c4a184536f50b8629af3480c5932$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000169059 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000169059 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5ceba3ebae6ecd5e27fa39a0365ff08e$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000169059 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2a87a11b02b8b69a8607d707f436330a$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000169059 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3c42114fa37390cfdc976bf0a9fcfb67$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000169059 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000169059 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000169059 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000169059 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000169059 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000169059 9141_ $$y2021
000169059 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000169059 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000169059 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2019$$d2021-01-27
000169059 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000169059 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000169059 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000169059 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-27
000169059 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000169059 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27
000169059 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-01-27
000169059 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000169059 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000169059 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000169059 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000169059 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000169059 980__ $$ajournal
000169059 980__ $$aVDB
000169059 980__ $$aI:(DE-He78)E020-20160331
000169059 980__ $$aUNRESTRICTED