Home > Publications database > Primary cardiovascular risk prediction by LDL-cholesterol in Caucasian middle-aged and older adults: a joint analysis of three cohorts. > print |
001 | 169060 | ||
005 | 20240229133637.0 | ||
024 | 7 | _ | |a 10.1093/eurjpc/zwab075 |2 doi |
024 | 7 | _ | |a pmid:34060615 |2 pmid |
024 | 7 | _ | |a 2047-4873 |2 ISSN |
024 | 7 | _ | |a 2047-4881 |2 ISSN |
024 | 7 | _ | |a altmetric:106870399 |2 altmetric |
037 | _ | _ | |a DKFZ-2021-01218 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Hilvo, Mika |0 0000-0003-0663-5843 |b 0 |
245 | _ | _ | |a Primary cardiovascular risk prediction by LDL-cholesterol in Caucasian middle-aged and older adults: a joint analysis of three cohorts. |
260 | _ | _ | |a London [u.a.] |c 2022 |b Sage Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1648719086_24556 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 2022 Mar 25;29(3):e128-e137 |
520 | _ | _ | |a Low-density lipoprotein cholesterol (LDL-C) is an established causal driver of atherosclerotic cardiovascular disease (ASCVD), but its performance and age-dependency as a biomarker for incident events and mortality arising from ASCVD is less clear. The aim was to determine the value of LDL-C as a susceptibility/risk biomarker for incident coronary heart disease (CHD), ASCVD, and stroke events and deaths, for the age groups <50 and ≥50 years.The performance of LDL-C was evaluated in three cohorts, FINRISK 2002 (n = 7709), HUSK (n = 5431), and ESTHER (n = 4559), by Cox proportional hazards models, C-statistics, and net reclassification index calculations. Additionally, the hazard ratios (HRs) for the three cohorts were pooled by meta-analysis. The most consistent association was observed for CHD [95% confidence interval (CI) for HRs per standard deviation ranging from 0.99 to 1.37], whereas the results were more modest for ASCVD (0.96-1.18) due to lack of association with stroke (0.77-1.24). The association and discriminatory value of LDL-C with all endpoints in FINRISK 2002 and HUSK were attenuated in subjects 50 years and older [HRs (95% CI) obtained from meta-analysis 1.11 (1.04-1.18) for CHD, 1.15 (1.02-1.29) for CHD death, 1.02 (0.98-1.06) for ASCVD, 1.12 (1.02-1.23) for ASCVD death, and 0.97 (0.89-1.05) for stroke].In middle-aged and older adults, associations between LDL-C and all the studied cardiovascular endpoints were relatively weak, while LDL-C showed stronger association with rare events of pre-mature CHD or ASCVD death among middle-aged adults. The predictive performance of LDL-C also depends on the studied cardiovascular endpoint. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de |
650 | _ | 7 | |a Cholesterol |2 Other |
650 | _ | 7 | |a Guideline |2 Other |
650 | _ | 7 | |a LDL |2 Other |
650 | _ | 7 | |a Performance |2 Other |
650 | _ | 7 | |a Prediction |2 Other |
650 | _ | 7 | |a Risk |2 Other |
700 | 1 | _ | |a Dhar, Indu |0 0000-0002-3096-8165 |b 1 |
700 | 1 | _ | |a Lääperi, Mitja |0 0000-0003-0636-6567 |b 2 |
700 | 1 | _ | |a Lysne, Vegard |0 0000-0002-0816-5075 |b 3 |
700 | 1 | _ | |a Sulo, Gehard |b 4 |
700 | 1 | _ | |a Tell, Grethe S |0 0000-0003-1386-1638 |b 5 |
700 | 1 | _ | |a Jousilahti, Pekka |b 6 |
700 | 1 | _ | |a Nygård, Ottar K |0 0000-0002-4885-1010 |b 7 |
700 | 1 | _ | |a Brenner, Hermann |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |b 8 |u dkfz |
700 | 1 | _ | |a Schöttker, Ben |0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46 |b 9 |u dkfz |
700 | 1 | _ | |a Laaksonen, Reijo |0 0000-0001-9888-4278 |b 10 |
773 | _ | _ | |a 10.1093/eurjpc/zwab075 |g p. zwab075 |0 PERI:(DE-600)2646239-4 |n 3 |p e128-e137 |t European journal of preventive cardiology |v 29 |y 2022 |x 2047-4881 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:169060 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 9 |6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
913 | 0 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-313 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Cancer risk factors and prevention |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-04 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-19 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2022-11-19 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|