001     169133
005     20240229133641.0
024 7 _ |a 10.1016/j.immuni.2021.05.003
|2 doi
024 7 _ |a pmid:34102100
|2 pmid
024 7 _ |a 1074-7613
|2 ISSN
024 7 _ |a 1097-4180
|2 ISSN
024 7 _ |a altmetric:107233877
|2 altmetric
037 _ _ |a DKFZ-2021-01275
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Xu, Shihao
|b 0
245 _ _ |a Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors.
260 _ _ |a New York, NY
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636098172_8627
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2021 Jul 13;54(7):1561-1577.e7
520 _ _ |a A common metabolic alteration in the tumor microenvironment (TME) is lipid accumulation, a feature associated with immune dysfunction. Here, we examined how CD8+ tumor infiltrating lymphocytes (TILs) respond to lipids within the TME. We found elevated concentrations of several classes of lipids in the TME and accumulation of these in CD8+ TILs. Lipid accumulation was associated with increased expression of CD36, a scavenger receptor for oxidized lipids, on CD8+ TILs, which also correlated with progressive T cell dysfunction. Cd36-/- T cells retained effector functions in the TME, as compared to WT counterparts. Mechanistically, CD36 promoted uptake of oxidized low-density lipoproteins (OxLDL) into T cells, and this induced lipid peroxidation and downstream activation of p38 kinase. Inhibition of p38 restored effector T cell functions in vitro, and resolution of lipid peroxidation by overexpression of glutathione peroxidase 4 restored functionalities in CD8+ TILs in vivo. Thus, an oxidized lipid-CD36 axis promotes intratumoral CD8+ T cell dysfunction and serves as a therapeutic avenue for immunotherapies.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a CD36
|2 Other
650 _ 7 |a CD8(+) T cells
|2 Other
650 _ 7 |a lipid peroxidation
|2 Other
650 _ 7 |a oxidized lipids
|2 Other
650 _ 7 |a tumor microenvironment
|2 Other
700 1 _ |a Chaudhary, Omkar
|b 1
700 1 _ |a Rodríguez-Morales, Patricia
|b 2
700 1 _ |a Sun, Xiaoli
|b 3
700 1 _ |a Chen, Dan
|b 4
700 1 _ |a Zappasodi, Roberta
|b 5
700 1 _ |a Xu, Ziyan
|b 6
700 1 _ |a Pinto, Antonio F M
|b 7
700 1 _ |a Williams, April
|b 8
700 1 _ |a Schulze, Isabell
|b 9
700 1 _ |a Farsakoglu, Yagmur
|b 10
700 1 _ |a Varanasi, Siva Karthik
|b 11
700 1 _ |a Low, Jun Siong
|b 12
700 1 _ |a Tang, Wenxi
|b 13
700 1 _ |a Wang, Haiping
|b 14
700 1 _ |a McDonald, Bryan
|b 15
700 1 _ |a Tripple, Victoria
|b 16
700 1 _ |a Downes, Michael
|b 17
700 1 _ |a Evans, Ronald M
|b 18
700 1 _ |a Abumrad, Nada A
|b 19
700 1 _ |a Merghoub, Taha
|b 20
700 1 _ |a Wolchok, Jedd D
|b 21
700 1 _ |a Shokhirev, Maxim N
|b 22
700 1 _ |a Ho, Ping-Chih
|b 23
700 1 _ |a Witztum, Joseph L
|b 24
700 1 _ |a Emu, Brinda
|b 25
700 1 _ |a Cui, Guoliang
|0 P:(DE-He78)0b7ce76033a6756b91f5bfb12602e20b
|b 26
|u dkfz
700 1 _ |a Kaech, Susan M
|b 27
773 _ _ |a 10.1016/j.immuni.2021.05.003
|g p. S1074761321002090
|0 PERI:(DE-600)2001966-X
|n 7
|p 1561-1577.e7
|t Immunity
|v 54
|y 2021
|x 1074-7613
909 C O |p VDB
|o oai:inrepo02.dkfz.de:169133
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 26
|6 P:(DE-He78)0b7ce76033a6756b91f5bfb12602e20b
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-314
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Tumor immunology
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IMMUNITY : 2019
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-04
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-04
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b IMMUNITY : 2019
|d 2021-02-04
920 1 _ |0 I:(DE-He78)D140-20160331
|k D140
|l T-Zell-Metabolismus
|x 0
920 1 _ |0 I:(DE-He78)D192-20160331
|k D192
|l T-Zell-Metabolismus
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D140-20160331
980 _ _ |a I:(DE-He78)D192-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21