001     169139
005     20240229133642.0
024 7 _ |a 10.1016/j.ygyno.2021.06.001
|2 doi
024 7 _ |a pmid:34099314
|2 pmid
024 7 _ |a 0090-8258
|2 ISSN
024 7 _ |a 1095-6859
|2 ISSN
024 7 _ |a altmetric:107298480
|2 altmetric
037 _ _ |a DKFZ-2021-01281
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Dossus, Laure
|b 0
245 _ _ |a Prospective analysis of circulating metabolites and endometrial cancer risk.
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1627470922_3141
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2021 Aug;162(2):475-481
520 _ _ |a Endometrial cancer is strongly associated with obesity and dysregulation of metabolic factors such as estrogen and insulin signaling are causal risk factors for this malignancy. To identify additional novel metabolic pathways associated with endometrial cancer we performed metabolomic analyses on pre-diagnostic plasma samples from 853 case-control pairs from the European Prospective Investigation into Cancer and Nutrition (EPIC).A total of 129 metabolites (acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexoses, and sphingolipids) were measured by liquid chromatography-mass spectrometry. Conditional logistic regression estimated the associations of metabolites with endometrial cancer risk. An analysis focusing on clusters of metabolites using the bootstrap lasso method was also employed.After adjustment for body mass index, sphingomyelin [SM] C18:0 was positively (OR1SD: 1.18, 95% CI: 1.05-1.33), and glycine, serine, and free carnitine (C0) were inversely (OR1SD: 0.89, 95% CI: 0.80-0.99; OR1SD: 0.89, 95% CI: 0.79-1.00 and OR1SD: 0.91, 95% CI: 0.81-1.00, respectively) associated with endometrial cancer risk. Serine, C0 and two sphingomyelins were selected by the lasso method in >90% of the bootstrap samples. The ratio of esterified to free carnitine (OR1SD: 1.14, 95% CI: 1.02-1.28) and that of short chain to free acylcarnitines (OR1SD: 1.12, 95% CI: 1.00-1.25) were positively associated with endometrial cancer risk. Further adjustment for C-peptide or other endometrial cancer risk factors only minimally altered the results.These findings suggest that variation in levels of glycine, serine, SM C18:0 and free carnitine may represent specific pathways linked to endometrial cancer development. If causal, these pathways may offer novel targets for endometrial cancer prevention.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a Amino acids
|2 Other
650 _ 7 |a Endometrial cancer
|2 Other
650 _ 7 |a Lipids
|2 Other
650 _ 7 |a Metabolomics
|2 Other
650 _ 7 |a Obesity
|2 Other
700 1 _ |a Kouloura, Eirini
|b 1
700 1 _ |a Biessy, Carine
|b 2
700 1 _ |a Viallon, Vivian
|b 3
700 1 _ |a Siskos, Alexandros P
|b 4
700 1 _ |a Dimou, Niki
|b 5
700 1 _ |a Rinaldi, Sabina
|b 6
700 1 _ |a Merritt, Melissa A
|b 7
700 1 _ |a Allen, Naomi
|b 8
700 1 _ |a Fortner, Renee
|0 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2
|b 9
|u dkfz
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 10
|u dkfz
700 1 _ |a Weiderpass, Elisabete
|b 11
700 1 _ |a Gram, Inger T
|b 12
700 1 _ |a Rothwell, Joseph A
|b 13
700 1 _ |a Lécuyer, Lucie
|b 14
700 1 _ |a Severi, Gianluca
|b 15
700 1 _ |a Schulze, Matthias B
|b 16
700 1 _ |a Nøst, Therese Haugdahl
|b 17
700 1 _ |a Crous-Bou, Marta
|b 18
700 1 _ |a Sánchez, Maria-Jose
|b 19
700 1 _ |a Amiano, Pilar
|b 20
700 1 _ |a Colorado-Yohar, Sandra M
|b 21
700 1 _ |a Gurrea, Aurelio Barricarte
|b 22
700 1 _ |a Schmidt, Julie A
|b 23
700 1 _ |a Palli, Domenico
|b 24
700 1 _ |a Agnoli, Claudia
|b 25
700 1 _ |a Tumino, Rosario
|b 26
700 1 _ |a Sacerdote, Carlotta
|b 27
700 1 _ |a Mattiello, Amalia
|b 28
700 1 _ |a Vermeulen, Roel
|b 29
700 1 _ |a Heath, Alicia K
|b 30
700 1 _ |a Christakoudi, Sofia
|b 31
700 1 _ |a Tsilidis, Konstantinos K
|b 32
700 1 _ |a Travis, Ruth C
|b 33
700 1 _ |a Gunter, Marc J
|b 34
700 1 _ |a Keun, Hector C
|b 35
773 _ _ |a 10.1016/j.ygyno.2021.06.001
|g p. S0090825821004479
|0 PERI:(DE-600)1467974-7
|n 2
|p 475-481
|t Gynecologic oncology
|v 162
|y 2021
|x 0090-8258
909 C O |o oai:inrepo02.dkfz.de:169139
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GYNECOL ONCOL : 2019
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21