000169296 001__ 169296
000169296 005__ 20240229133648.0
000169296 0247_ $$2doi$$a10.1016/j.mri.2021.06.013
000169296 0247_ $$2pmid$$apmid:34147597
000169296 0247_ $$2ISSN$$a0730-725X
000169296 0247_ $$2ISSN$$a1873-5894
000169296 0247_ $$2altmetric$$aaltmetric:107949146
000169296 037__ $$aDKFZ-2021-01393
000169296 041__ $$aEnglish
000169296 082__ $$a610
000169296 1001_ $$0P:(DE-He78)b542df279437ced507cda1a8c93a2d4d$$aZhang, Kevin Sun$$b0$$eFirst author$$udkfz
000169296 245__ $$aImprovement of PI-RADS-dependent prostate cancer classification by quantitative image assessment using radiomics or mean ADC.
000169296 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000169296 3367_ $$2DRIVER$$aarticle
000169296 3367_ $$2DataCite$$aOutput Types/Journal article
000169296 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625149162_11425
000169296 3367_ $$2BibTeX$$aARTICLE
000169296 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000169296 3367_ $$00$$2EndNote$$aJournal Article
000169296 500__ $$a#EA:E010#LA:E010# / 2021 Jun 18;82:9-17
000169296 520__ $$aBackground Currently, interpretation of prostate MRI is performed qualitatively. Quantitative assessment of the mean apparent diffusion coefficient (mADC) is promising to improve diagnostic accuracy while radiomic machine learning (RML) allows to probe complex parameter spaces to identify the most promising multi-parametric models. We have previously developed quantitative RML and ADC classifiers for prediction of clinically significant prostate cancer (sPC) from prostate MRI, however these have not been combined with radiologist PI-RADS assessment. Purpose To propose and evaluate diagnostic algorithms combining quantitative ADC or RML and qualitative PI-RADS assessment for prediction of sPC. Methods and population The previously published quantitative models (RML and mADC) were utilized to construct four algorithms: 1) Down(ADC) and 2) Down(RML): clinically detected PI-RADS positive prostate lesions (defined as either PI-RADS≥3 or ≥4) were downgraded to MRI negative upon negative quantitative assessment; and 3) Up(ADC) and 4) Up(RML): MRI-negative lesions were upgraded to MRI-positive upon positive assessment of quantitative parameters. Analyses were performed at the individual lesion level and the patient level in 133 consecutive patients with suspicion for clinically significant prostate cancer (sPC, International Society of Urological Pathology (ISUP) grade group≥2), the test set subcohort of a previously published patient population. McNemar test was used to compare differences in sensitivity, specificity and accuracy. Differences between lesions of different prostate zones were assessed using ANOVA. Reduction in false positive assessments was assessed as ratios. Results Compared to clinical assessment at the PI-RADS≥4 cut-off alone, algorithms Down(ADC/RML) improved specificity from 43% to 65% (p = 0.001)/62% (p = 0.003), while sensitivity did not change significantly at 89% compared to 87% (p = 1.0)/89% (unchanged) on the patient level. Reduction of false positive lesions was 50% [26/52] in the PZ and 53% [15/28] in the TZ. Algorithms Up(ADC/RML) led, on a patient basis, to an unfavorable loss of specificity from 43% to 30% (p = 0.039)/32% (p = 0.106), with insignificant increase of sensitivity from 89% to 96%/96% (both p = 1.0). Compared to clinical assessment at the PI-RADS≥3 cut-off alone, similar results were observed for Down(ADC) with significantly increased specificity from 2% to 23% (p < 0.001) and unchanged sensitivity on the lesion level; patient level specificity increased only non-significantly. Conclusion Downgrading PI-RADS≥3 and ≥ 4 lesions based on quantitative mADC measurements or RML classifiers can increase diagnostic accuracy by enhancing specificity and preserving sensitivity for detection of sPC and reduce false positives.
000169296 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000169296 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000169296 650_7 $$2Other$$aADC
000169296 650_7 $$2Other$$aMRI
000169296 650_7 $$2Other$$aPI-RADS
000169296 650_7 $$2Other$$aProstate cancer
000169296 650_7 $$2Other$$aRadiomics
000169296 7001_ $$0P:(DE-He78)4b5e5faa688c6b833c70b6777f91f662$$aSchelb, Patrick$$b1$$udkfz
000169296 7001_ $$0P:(DE-He78)a35f3fa04c359e037b2377f96920f93f$$aKohl, Simon$$b2
000169296 7001_ $$0P:(DE-He78)79897f8897ff77676549d9895258a0f2$$aRadtke, Jan Philipp$$b3$$udkfz
000169296 7001_ $$0P:(DE-He78)1042737c83ba70ec508bdd99f0096864$$aWiesenfarth, Manuel$$b4$$udkfz
000169296 7001_ $$aSchimmöller, Lars$$b5
000169296 7001_ $$0P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aKuder, Tristan Anselm$$b6$$udkfz
000169296 7001_ $$aStenzinger, Albrecht$$b7
000169296 7001_ $$aHohenfellner, Markus$$b8
000169296 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b9$$udkfz
000169296 7001_ $$0P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3$$aMaier-Hein, Klaus$$b10$$udkfz
000169296 7001_ $$0P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93$$aBonekamp, David$$b11$$eLast author$$udkfz
000169296 773__ $$0PERI:(DE-600)1500646-3$$a10.1016/j.mri.2021.06.013$$gp. S0730725X21001016$$p9-17$$tMagnetic resonance imaging$$v82$$x0730-725X$$y2021
000169296 909CO $$ooai:inrepo02.dkfz.de:169296$$pVDB
000169296 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b542df279437ced507cda1a8c93a2d4d$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000169296 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b5e5faa688c6b833c70b6777f91f662$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000169296 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a35f3fa04c359e037b2377f96920f93f$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000169296 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)79897f8897ff77676549d9895258a0f2$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000169296 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1042737c83ba70ec508bdd99f0096864$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000169296 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000169296 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000169296 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000169296 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000169296 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000169296 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000169296 9141_ $$y2021
000169296 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-31$$wger
000169296 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON IMAGING : 2019$$d2021-01-31
000169296 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000169296 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000169296 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-31
000169296 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-31
000169296 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000169296 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000169296 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-01-31
000169296 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000169296 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000169296 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000169296 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000169296 9201_ $$0I:(DE-He78)E230-20160331$$kE230$$lE230 Medizinische Bildverarbeitung$$x1
000169296 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x2
000169296 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x3
000169296 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x4
000169296 980__ $$ajournal
000169296 980__ $$aVDB
000169296 980__ $$aI:(DE-He78)E010-20160331
000169296 980__ $$aI:(DE-He78)E230-20160331
000169296 980__ $$aI:(DE-He78)C060-20160331
000169296 980__ $$aI:(DE-He78)E020-20160331
000169296 980__ $$aI:(DE-He78)HD01-20160331
000169296 980__ $$aUNRESTRICTED