001     169400
005     20240229133650.0
024 7 _ |a 10.1016/j.chembiol.2021.06.001
|2 doi
024 7 _ |a pmid:34192523
|2 pmid
024 7 _ |a 2451-9448
|2 ISSN
024 7 _ |a 2451-9456
|2 ISSN
024 7 _ |a altmetric:108377473
|2 altmetric
037 _ _ |a DKFZ-2021-01474
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Zhang, Si Min
|b 0
245 _ _ |a NUDT15-mediated hydrolysis limits the efficacy of anti-HCMV drug ganciclovir.
260 _ _ |a Amsterdam
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641135644_5858
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2021 Dec 16;28(12):1693-1702.e6
520 _ _ |a Ganciclovir (GCV) is the first-line therapy against human cytomegalovirus (HCMV), a widespread infection that is particularly dangerous for immunodeficient individuals. Closely resembling deoxyguanosine triphosphate, the tri-phosphorylated metabolite of GCV (GCV-TP) is preferentially incorporated by the viral DNA polymerase, thereby terminating chain extension and, eventually, viral replication. However, the treatment outcome of GCV varies greatly among individuals, therefore warranting better understanding of its metabolism. Here we show that NUDT15, a Nudix hydrolase known to metabolize thiopurine triphosphates, can similarly hydrolyze GCV-TP through biochemical studies and co-crystallization of the NUDT15/GCV-TP complex. More critically, GCV efficacy was potentiated in HCMV-infected cells following NUDT15 depletion by RNAi or inhibition by an in-house-developed, nanomolar NUDT15 inhibitor, TH8321, suggesting that pharmacological targeting of NUDT15 is a possible avenue to improve existing anti-HCMV regimens. Collectively, the data further implicate NUDT15 as a broad-spectrum metabolic regulator of nucleoside analog therapeutics, such as thiopurines and GCV.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a NUDT15
|2 Other
650 _ 7 |a Nudix hydrolase
|2 Other
650 _ 7 |a TH8321
|2 Other
650 _ 7 |a antiherpes
|2 Other
650 _ 7 |a cytomegalovirus
|2 Other
650 _ 7 |a ganciclovir
|2 Other
650 _ 7 |a high-throughput infectivity assay
|2 Other
650 _ 7 |a nucleoside analog drug
|2 Other
650 _ 7 |a small-molecule inhibitor
|2 Other
700 1 _ |a Rehling, Daniel
|b 1
700 1 _ |a Jemth, Ann-Sofie
|b 2
700 1 _ |a Throup, Adam
|b 3
700 1 _ |a Landázuri, Natalia
|b 4
700 1 _ |a Almlöf, Ingrid
|b 5
700 1 _ |a Göttmann, Mona
|0 P:(DE-He78)442ee8f54d846d943023a916889feb8e
|b 6
|u dkfz
700 1 _ |a Valerie, Nicholas C K
|b 7
700 1 _ |a Borhade, Sanjay R
|b 8
700 1 _ |a Wakchaure, Prasad
|b 9
700 1 _ |a Page, Brent D G
|b 10
700 1 _ |a Desroses, Matthieu
|b 11
700 1 _ |a Homan, Evert J
|b 12
700 1 _ |a Scobie, Martin
|b 13
700 1 _ |a Rudd, Sean G
|b 14
700 1 _ |a Berglund, Ulrika Warpman
|b 15
700 1 _ |a Söderberg-Nauclér, Cecilia
|b 16
700 1 _ |a Stenmark, Pål
|b 17
700 1 _ |a Helleday, Thomas
|b 18
773 _ _ |a 10.1016/j.chembiol.2021.06.001
|g p. S2451945621002683
|0 PERI:(DE-600)2850144-5
|n 12
|p 1693-1702.e6
|t Cell chemical biology
|v 28
|y 2021
|x 2451-9456
909 C O |p VDB
|o oai:inrepo02.dkfz.de:169400
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)442ee8f54d846d943023a916889feb8e
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Functional and structural genomics
|x 0
914 1 _ |y 2021
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL CHEM BIOL : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL CHEM BIOL : 2019
|d 2021-01-29
920 1 _ |0 I:(DE-He78)B067-20160331
|k B067
|l B067 Translationale Zielmoleküle für Hirntumoren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B067-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21