000169693 001__ 169693
000169693 005__ 20240229133653.0
000169693 0247_ $$2doi$$a10.1016/j.zemedi.2021.03.006
000169693 0247_ $$2pmid$$apmid:34210537
000169693 0247_ $$2ISSN$$a0040-5973
000169693 0247_ $$2ISSN$$a0939-3889
000169693 0247_ $$2ISSN$$a1876-4436
000169693 037__ $$aDKFZ-2021-01500
000169693 041__ $$aEnglish
000169693 082__ $$a610
000169693 1001_ $$aHöfel, Sebastian$$b0
000169693 245__ $$aSuitability of superficial electron paramagnetic resonance dosimetry for in vivo measurement and verification of cumulative total doses during IMRT: A proof of principle.
000169693 260__ $$aAmsterdam$$bElsevier, Urban & Fischer$$c2021
000169693 264_1 $$2Crossref$$3print$$bElsevier BV$$c2021-11-01
000169693 264_1 $$2Crossref$$3print$$bElsevier BV$$c2021-11-01
000169693 3367_ $$2DRIVER$$aarticle
000169693 3367_ $$2DataCite$$aOutput Types/Journal article
000169693 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642584302_1941
000169693 3367_ $$2BibTeX$$aARTICLE
000169693 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000169693 3367_ $$00$$2EndNote$$aJournal Article
000169693 500__ $$a#LA:E055# / Volume 31, Issue 4, November 2021, Pages 365-377
000169693 520__ $$aThe present study investigates superficial in vivo dosimetry (IVD) by means of a previously proposed electron paramagnetic resonance (EPR) dosimetry system aiming at measuring and verifying total doses delivered by complex radiotherapy treatments. In view of novel regulatory requirements in Germany, differences between measured and planned total doses to the EPR dosimeters are analyzed and compared to reporting thresholds for significant occurrences.EPR dosimeters, each consisting of one lithium formate monohydrate (LFM) and one polycrystalline l-alanine (ALA) pellet, were attached to the surface of an anthropomorphic head phantom. Three head and neck treatments with total target doses ranging from 30 to 64Gy were fully delivered to the phantom by helical tomotherapy. During each treatment, eight EPR dosimeters were placed at distinct spots: (i) within or next to the planning target volume (PTV), (ii) near to organs at risk including the parotids and the lenses, (iii) at the thyroid lying out-of-field. EPR read out was always performed after all fractions were delivered. EPR results were compared to thermoluminescence dosimeter (TLD) measurements and to the planned total doses derived from the treatment planning system (TPS). Planned total doses to the EPR dosimeters ranged from about 2 to 64Gy.By taking uncertainties into account, the measured and planned doses were in good agreement. Exceptions occurred mainly at the thyroid (out-of-field) and lenses (extreme sparing). The maximum total dose difference between EPR results and corresponding planned doses was 1.3Gy occurring at the lenses. Remarkably, each LFM and ALA pellet placed within or next to the PTV provided dose values that were within ±4% of the planned dose. Dose deviations from planned dose values were comparable for EPR and TLD measurements.The results of this proof of principle study suggests that superficial EPR-IVD is applicable in a wide dose range and in various irradiation conditions - being a valuable tool for monitoring cumulative total doses delivered by complex IMRT treatments. EPR-IVD in combination with helical tomotherapy is suitable to reliably detect local dose deviations at superficial dosimeter spots in the order of current national reporting thresholds for significant occurrences (i.e. 10%/4Gy).
000169693 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000169693 542__ $$2Crossref$$i2021-11-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000169693 542__ $$2Crossref$$i2021-05-11$$uhttp://creativecommons.org/licenses/by-nc-nd/4.0/
000169693 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000169693 650_7 $$2Other$$aAlanine
000169693 650_7 $$2Other$$aEPR dosimetry
000169693 650_7 $$2Other$$aIn vivo
000169693 650_7 $$2Other$$aIntensity modulated radiotherapy
000169693 650_7 $$2Other$$aLithium formate
000169693 650_7 $$2Other$$aTomotherapy
000169693 7001_ $$aFix, Michael K$$b1
000169693 7001_ $$aDrescher, Malte$$b2
000169693 7001_ $$0P:(DE-He78)ca89260a6f950d2149ad4aa50732aa2c$$aZwicker, Felix$$b3$$eLast author$$udkfz
000169693 77318 $$2Crossref$$3journal-article$$a10.1016/j.zemedi.2021.03.006$$bElsevier BV$$d2021-11-01$$n4$$p365-377$$tZeitschrift für Medizinische Physik$$v31$$x0939-3889$$y2021
000169693 773__ $$0PERI:(DE-600)2231492-1$$a10.1016/j.zemedi.2021.03.006$$gp. S0939388921000349$$n4$$p365-377$$tZeitschrift für medizinische Physik$$v31$$x0939-3889$$y2021
000169693 909CO $$ooai:inrepo02.dkfz.de:169693$$pVDB
000169693 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ca89260a6f950d2149ad4aa50732aa2c$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000169693 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000169693 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000169693 9141_ $$y2021
000169693 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000169693 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000169693 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bZ MED PHYS : 2015
000169693 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000169693 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000169693 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000169693 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000169693 9201_ $$0I:(DE-He78)E055-20160331$$kE055$$lE055 KKE Translationale Radioonkologie$$x0
000169693 980__ $$ajournal
000169693 980__ $$aVDB
000169693 980__ $$aI:(DE-He78)E055-20160331
000169693 980__ $$aUNRESTRICTED
000169693 999C5 $$1International Atomic Energy Agency$$2Crossref$$oInternational Atomic Energy Agency 2016$$y2016
000169693 999C5 $$1Kry$$2Crossref$$9-- missing cx lookup --$$a10.1002/mp.12462$$pe391 -$$tMed Phys$$v44$$y2017
000169693 999C5 $$1World Health Organization$$2Crossref$$oWorld Health Organization 2008$$y2008
000169693 999C5 $$1International Atomic Energy Agency$$2Crossref$$oInternational Atomic Energy Agency 2001$$y2001
000169693 999C5 $$1International Commission on Radiological Protection$$2Crossref$$oInternational Commission on Radiological Protection 2000$$y2000
000169693 999C5 $$1International Atomic Energy Agency$$2Crossref$$oInternational Atomic Energy Agency 2013$$y2013
000169693 999C5 $$1Van Dam$$2Crossref$$oVan Dam 2006$$y2006
000169693 999C5 $$2Crossref$$uRichtlinie 2013/59/Euratom vom 5. Dezember 2013 zur Festlegung grundlegender Sicherheitsnormen für den Schutz vor den Gefahren einer Exposition gegenüber ionisierender Strahlung und zur Aufhebung der Richtlinien 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom und 2003/122/Euratom, Amtsblatt der Europäischen Union L13/1 vom 17.01.2014.
000169693 999C5 $$2Crossref$$uGesetz zum Schutz vor der schädlichen Wirkung ionisierender Strahlung vom 27. Juni 2017 (BGBl. 2017 I S. 1966).
000169693 999C5 $$2Crossref$$uVerordnung zum Schutz vor der schädlichen Wirkung ionisierender Strahlung vom 29. November 2018 (BGBl. 2018 I S. 2034, 2036).
000169693 999C5 $$1Baffa$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00411-013-0509-2$$p233 -$$tRadiat Environ Biophys$$v53$$y2014
000169693 999C5 $$1Indovina$$2Crossref$$oIndovina 1989$$y1989
000169693 999C5 $$1Kudynski$$2Crossref$$9-- missing cx lookup --$$a10.1016/0969-8043(93)90042-9$$p903 -$$tAppl Radiat Isot$$v44$$y1993
000169693 999C5 $$1Kuntz$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0969-8043(96)00171-6$$p1183 -$$tAppl Radiat Isot$$v47$$y1996
000169693 999C5 $$1Schaeken$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0969-8043(96)00040-1$$p1177 -$$tAppl Radiat Isot$$v47$$y1996
000169693 999C5 $$1Wagner$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.radonc.2008.03.017$$p140 -$$tRadiother Oncol$$v88$$y2008
000169693 999C5 $$1Rech$$2Crossref$$9-- missing cx lookup --$$a10.1093/rpd/ncu128$$p194 -$$tRadiat Prot Dosimetry$$v159$$y2014
000169693 999C5 $$1Wagner$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6560/aa6ee2$$p5462 -$$tPhys Med Biol$$v62$$y2017
000169693 999C5 $$1Höfel$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6560/ab9414$$p045005 -$$tPhys Med Biol$$v66$$y2021
000169693 999C5 $$1Netherlands Commission on Radiation Dosimetry$$2Crossref$$oNetherlands Commission on Radiation Dosimetry 2017$$y2017
000169693 999C5 $$1Langen$$2Crossref$$9-- missing cx lookup --$$a10.1118/1.3462971$$p4817 -$$tMed Phys$$v37$$y2010
000169693 999C5 $$1Agostinelli$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-9002(03)01368-8$$p250 -$$tNucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip$$v506$$y2003
000169693 999C5 $$1Sterpin$$2Crossref$$oSterpin 2007$$y2007
000169693 999C5 $$1Sterpin$$2Crossref$$9-- missing cx lookup --$$a10.1088/0031-9155/53/8/011$$p2161 -$$tPhys Med Biol$$v53$$y2008
000169693 999C5 $$2Crossref$$uBIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML, Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement JCGM 100:2008. https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf.
000169693 999C5 $$1Schneider$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.zemedi.2013.10.008$$p211 -$$tZeit Med Phys$$v24$$y2014
000169693 999C5 $$1Desrosiers$$2Crossref$$9-- missing cx lookup --$$a10.6028/jres.113.007$$tJ Res Natl Inst Stand Technol$$v113$$y2008
000169693 999C5 $$1Gustafsson$$2Crossref$$9-- missing cx lookup --$$a10.1088/0031-9155/53/17/014$$p4667 -$$tPhys Med Biol$$v53$$y2008
000169693 999C5 $$1Waldeland$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.radmeas.2011.03.014$$p945 -$$tRadiat Meas$$v46$$y2011
000169693 999C5 $$1Anton$$2Crossref$$9-- missing cx lookup --$$a10.1088/0031-9155/58/10/3259$$p3259 -$$tPhys Med Biol$$v58$$y2013
000169693 999C5 $$1Ramsey$$2Crossref$$9-- missing cx lookup --$$a10.1118/1.2757000$$p3286 -$$tMed Phys$$v34$$y2007
000169693 999C5 $$1Cheek$$2Crossref$$9-- missing cx lookup --$$a10.1118/1.2952362$$p3565 -$$tMed Phys$$v35$$y2008
000169693 999C5 $$1Avanzo$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ejmp.2012.04.004$$p304 -$$tPhys Med$$v29$$y2013
000169693 999C5 $$1Accuray Inc.$$2Crossref$$oAccuray Inc. 2017$$y2017
000169693 999C5 $$1Accuray Inc.$$2Crossref$$oAccuray Inc. 2013$$y2013
000169693 999C5 $$1Kinhikar$$2Crossref$$9-- missing cx lookup --$$a10.4103/0973-1482.42255$$p88 -$$tJ Cancer Res Ther$$v4$$y2008
000169693 999C5 $$1Reynders$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.radonc.2009.07.005$$p71 -$$tRadiother Oncol$$v93$$y2009
000169693 999C5 $$1Anton$$2Crossref$$9-- missing cx lookup --$$a10.1088/0031-9155/51/21/003$$p5419 -$$tPhys Med Biol$$v51$$y2006
000169693 999C5 $$1Wagner$$2Crossref$$9-- missing cx lookup --$$a10.1088/0031-9155/56/5/010$$p1373 -$$tPhys Med Biol$$v56$$y2011