000169709 001__ 169709
000169709 005__ 20240229133653.0
000169709 0247_ $$2doi$$a10.1002/mrm.28909
000169709 0247_ $$2pmid$$apmid:34216047
000169709 0247_ $$2ISSN$$a0740-3194
000169709 0247_ $$2ISSN$$a1522-2594
000169709 037__ $$aDKFZ-2021-01516
000169709 041__ $$aEnglish
000169709 082__ $$a610
000169709 1001_ $$0P:(DE-He78)7985b432d853ab8929db0f1cb121667f$$aOrzada, Stephan$$b0$$eFirst author$$udkfz
000169709 245__ $$aPost-processing algorithms for specific absorption rate compression.
000169709 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2021
000169709 3367_ $$2DRIVER$$aarticle
000169709 3367_ $$2DataCite$$aOutput Types/Journal article
000169709 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642584990_1940
000169709 3367_ $$2BibTeX$$aARTICLE
000169709 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000169709 3367_ $$00$$2EndNote$$aJournal Article
000169709 500__ $$a#EA:E020#LA:E020# / Volume86, Issue5 November 2021 Pages 2853-2861
000169709 520__ $$aCompression of local specific absorption rate (SAR) matrices is essential for enabling SAR monitoring and efficient pulse calculation in parallel transmission. Improvements in compression result in lower error margin and/or lower number of virtual observation points (VOPs). The purpose of this work is to introduce two algorithms for post-processing of already compressed VOP sets. One calculates individual overestimation matrices for the VOPs to reduce overestimation, the other identifies redundant VOPs.The first algorithm was evaluated for VOP sets calculated for three different transmit arrays with either 8 or 16 channels. For each array, two different overestimation matrices were used to generate the VOP sets. Each post-processed VOP set was evaluated using one million random excitation vectors and the results compared to the VOP set before post-processing. The second algorithm was evaluated by utilizing the same random excitation vectors and comparing the results after removal of the redundant VOPs with the results before removal to verify that these were identical.The first algorithm reduced the mean overestimation by up to four fifths compared to the original set, while keeping the number of VOPs constant. The second algorithm decreased the number of VOPs generated by a compression with Eichfelder and Gebhardt's algorithm by more than 40% in 40% of the investigated cases and by more than 20% in 73% of the investigated cases.Two post-processing algorithms are presented that enhance previously compressed VOP sets by improving the accuracy per number of VOPs.
000169709 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000169709 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000169709 650_7 $$2Other$$aMRI
000169709 650_7 $$2Other$$aSAR
000169709 650_7 $$2Other$$aVOP compression
000169709 650_7 $$2Other$$aVOPs
000169709 650_7 $$2Other$$alocal SAR
000169709 7001_ $$0P:(DE-He78)bcbe9862276365dd99a98b48449fd046$$aFiedler, Thomas$$b1$$udkfz
000169709 7001_ $$aQuick, Harald H$$b2
000169709 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark$$b3$$eLast author$$udkfz
000169709 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.28909$$gp. mrm.28909$$n5$$p2853-2861$$tMagnetic resonance in medicine$$v86$$x1522-2594$$y2021
000169709 909CO $$ooai:inrepo02.dkfz.de:169709$$pVDB
000169709 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7985b432d853ab8929db0f1cb121667f$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000169709 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bcbe9862276365dd99a98b48449fd046$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000169709 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000169709 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000169709 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000169709 9141_ $$y2021
000169709 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000169709 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000169709 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2019$$d2021-01-27
000169709 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000169709 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000169709 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000169709 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-27
000169709 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000169709 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27
000169709 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-01-27
000169709 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000169709 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000169709 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000169709 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000169709 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000169709 980__ $$ajournal
000169709 980__ $$aVDB
000169709 980__ $$aI:(DE-He78)E020-20160331
000169709 980__ $$aUNRESTRICTED