001     169709
005     20240229133653.0
024 7 _ |a 10.1002/mrm.28909
|2 doi
024 7 _ |a pmid:34216047
|2 pmid
024 7 _ |a 0740-3194
|2 ISSN
024 7 _ |a 1522-2594
|2 ISSN
037 _ _ |a DKFZ-2021-01516
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Orzada, Stephan
|0 P:(DE-He78)7985b432d853ab8929db0f1cb121667f
|b 0
|e First author
|u dkfz
245 _ _ |a Post-processing algorithms for specific absorption rate compression.
260 _ _ |a New York, NY [u.a.]
|c 2021
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642584990_1940
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E020#LA:E020# / Volume86, Issue5 November 2021 Pages 2853-2861
520 _ _ |a Compression of local specific absorption rate (SAR) matrices is essential for enabling SAR monitoring and efficient pulse calculation in parallel transmission. Improvements in compression result in lower error margin and/or lower number of virtual observation points (VOPs). The purpose of this work is to introduce two algorithms for post-processing of already compressed VOP sets. One calculates individual overestimation matrices for the VOPs to reduce overestimation, the other identifies redundant VOPs.The first algorithm was evaluated for VOP sets calculated for three different transmit arrays with either 8 or 16 channels. For each array, two different overestimation matrices were used to generate the VOP sets. Each post-processed VOP set was evaluated using one million random excitation vectors and the results compared to the VOP set before post-processing. The second algorithm was evaluated by utilizing the same random excitation vectors and comparing the results after removal of the redundant VOPs with the results before removal to verify that these were identical.The first algorithm reduced the mean overestimation by up to four fifths compared to the original set, while keeping the number of VOPs constant. The second algorithm decreased the number of VOPs generated by a compression with Eichfelder and Gebhardt's algorithm by more than 40% in 40% of the investigated cases and by more than 20% in 73% of the investigated cases.Two post-processing algorithms are presented that enhance previously compressed VOP sets by improving the accuracy per number of VOPs.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a MRI
|2 Other
650 _ 7 |a SAR
|2 Other
650 _ 7 |a VOP compression
|2 Other
650 _ 7 |a VOPs
|2 Other
650 _ 7 |a local SAR
|2 Other
700 1 _ |a Fiedler, Thomas
|0 P:(DE-He78)bcbe9862276365dd99a98b48449fd046
|b 1
|u dkfz
700 1 _ |a Quick, Harald H
|b 2
700 1 _ |a Ladd, Mark
|0 P:(DE-He78)022611a2317e4de40fd912e0a72293a8
|b 3
|e Last author
|u dkfz
773 _ _ |a 10.1002/mrm.28909
|g p. mrm.28909
|0 PERI:(DE-600)1493786-4
|n 5
|p 2853-2861
|t Magnetic resonance in medicine
|v 86
|y 2021
|x 1522-2594
909 C O |p VDB
|o oai:inrepo02.dkfz.de:169709
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)7985b432d853ab8929db0f1cb121667f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)bcbe9862276365dd99a98b48449fd046
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)022611a2317e4de40fd912e0a72293a8
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAGN RESON MED : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21