001     169730
005     20240229133654.0
024 7 _ |a 10.1182/bloodadvances.2021004423
|2 doi
024 7 _ |a pmid:34228109
|2 pmid
024 7 _ |a 2473-9529
|2 ISSN
024 7 _ |a 2473-9537
|2 ISSN
024 7 _ |a 2476-9537
|2 ISSN
024 7 _ |a altmetric:108841564
|2 altmetric
037 _ _ |a DKFZ-2021-01535
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Saunders, Charlie N
|0 0000-0001-7221-1358
|b 0
245 _ _ |a Search for AL amyloidosis risk factors using Mendelian randomization.
260 _ _ |a Washington, DC
|c 2021
|b American Society of Hematology
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1626338787_22851
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2021 Jul 13;5(13):2725-2731
520 _ _ |a In amyloid light chain (AL) amyloidosis, amyloid fibrils derived from immunoglobulin light chain are deposited in many organs, interfering with their function. The etiology of AL amyloidosis is poorly understood. Summary data from genome-wide association studies (GWASs) of multiple phenotypes can be exploited by Mendelian randomization (MR) methodology to search for factors influencing AL amyloidosis risk. We performed a 2-sample MR analyzing 72 phenotypes, proxied by 3461 genetic variants, and summary genetic data from a GWAS of 1129 AL amyloidosis cases and 7589 controls. Associations with a Bonferroni-defined significance level were observed for genetically predicted increased monocyte counts (P = 3.8 × 10-4) and the tumor necrosis factor receptor superfamily member 17 (TNFRSF17) gene (P = 3.4 × 10-5). Two other associations with the TNFRSF (members 6 and 19L) reached a nominal significance level. The association between genetically predicted decreased fibrinogen levels may be related to roles of fibrinogen other than blood clotting. be related to its nonhemostatic role. It is plausible that a causal relationship with monocyte concentration could be explained by selection of a light chain-producing clone during progression of monoclonal gammopathy of unknown significance toward AL amyloidosis. Because TNFRSF proteins have key functions in lymphocyte biology, it is entirely plausible that they offer a potential link to AL amyloidosis pathophysiology. Our study provides insight into AL amyloidosis etiology, suggesting high circulating levels of monocytes and TNFRSF proteins as risk factors.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
700 1 _ |a Chattopadhyay, Subhayan
|b 1
700 1 _ |a Huhn, Stefanie
|b 2
700 1 _ |a Weinhold, Niels
|b 3
700 1 _ |a Hoffmann, Per
|b 4
700 1 _ |a Nöthen, Markus M
|0 0000-0002-8770-2464
|b 5
700 1 _ |a Jöckel, Karl-Heinz
|b 6
700 1 _ |a Schmidt, Börge
|b 7
700 1 _ |a Landi, Stefano
|b 8
700 1 _ |a Goldschmidt, Hartmut
|b 9
700 1 _ |a Milani, Paolo
|0 0000-0002-2268-9422
|b 10
700 1 _ |a Merlini, Giampaolo
|b 11
700 1 _ |a Rowcieno, Dorota
|b 12
700 1 _ |a Hawkins, Philip
|b 13
700 1 _ |a Hegenbart, Ute
|0 0000-0003-1917-6746
|b 14
700 1 _ |a Palladini, Giovanni
|0 0000-0001-5994-5138
|b 15
700 1 _ |a Wechalekar, Ashutosh
|b 16
700 1 _ |a Schönland, Stefan O
|b 17
700 1 _ |a Försti, Asta
|0 P:(DE-He78)f26164c08f2f14abcf31e52e13ee3696
|b 18
|u dkfz
700 1 _ |a Houlston, Richard
|b 19
700 1 _ |a Hemminki, Kari
|0 P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865
|b 20
|u dkfz
773 _ _ |a 10.1182/bloodadvances.2021004423
|g Vol. 5, no. 13, p. 2725 - 2731
|0 PERI:(DE-600)2876449-3
|n 13
|p 2725 - 2731
|t Blood advances
|v 5
|y 2021
|x 2473-9537
909 C O |o oai:inrepo02.dkfz.de:169730
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)f26164c08f2f14abcf31e52e13ee3696
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Functional and structural genomics
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2021
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BLOOD ADV : 2019
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-31
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-31
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21