001     169804
005     20240229133655.0
024 7 _ |a 10.1016/j.freeradbiomed.2021.07.001
|2 doi
024 7 _ |a pmid:34245858
|2 pmid
024 7 _ |a 0891-5849
|2 ISSN
024 7 _ |a 1873-4596
|2 ISSN
037 _ _ |a DKFZ-2021-01558
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Gamara, Jouda
|b 0
245 _ _ |a Arf6 regulates energy metabolism in neutrophils.
260 _ _ |a New York, NY [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1626089517_23744
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The small GTPase Arf6 regulates many cellular processes, including cytoskeletal remodeling, receptor endocytosis, and pathogen phagocytosis. Arf6 silencing in neutrophil (PMN)-like cells is well-known to inhibit chemotactic peptide-mediated activation of phospholipase D, the oxidative burst, and β2 integrin-dependent adhesion. In conditional knockout (cKO) mice, the migration to inflammatory sites of Arf6-deficient PMNs was diminished and associated with reduced cell surface expression of β2 integrins. In this study we assessed the impact of Arf6 depletion on the functions and gene expression profile of PMNs isolated from the mouse air pouch. Numerous genes involved in response to oxygen levels, erythrocyte and myeloid differentiation, macrophage chemotaxis, response to chemicals, apoptosis, RNA destabilization, endosome organization, and vesicle transport were differentially expressed in PMNs cKO for Arf6. Lpar6 and Lacc-1 were the most up-regulated and down-regulated genes, respectively. The deletion of Arf6 also decreased Lacc-1 protein level in PMNs, and silencing of Arf6 in THP-1 monocytic cells delayed LPS-mediated Lacc-1 expression. We report that fMLP or zymosan-induced glycolysis and oxygen consumption rate were both decreased in air pouch PMNs but not in bone marrow PMNs of Arf6 cKO mice. Reduced oxygen consumption correlated with a decrease in superoxide and ROS production. Deletion of Arf6 in PMNs also reduced phagocytosis and interfered with apoptosis. The data suggest that Arf6 regulates energy metabolism, which may contribute to impaired phagocytosis, ROS production, and apoptosis in PMN-Arf6 cKO. This study provides new information on the functions and the inflammatory pathways influenced by Arf6 in PMNs.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a Apoptosis
|2 Other
650 _ 7 |a Arf6
|2 Other
650 _ 7 |a Conditional knockout
|2 Other
650 _ 7 |a FAMIN
|2 Other
650 _ 7 |a Glycolysis
|2 Other
650 _ 7 |a Inflammation
|2 Other
650 _ 7 |a Metabolism
|2 Other
650 _ 7 |a Mouse
|2 Other
650 _ 7 |a Neutrophil
|2 Other
650 _ 7 |a Phagocytosis
|2 Other
650 _ 7 |a ROS
|2 Other
650 _ 7 |a Superoxide
|2 Other
700 1 _ |a Davis, Lynn
|b 1
700 1 _ |a Leong, Andrew Z
|b 2
700 1 _ |a Pagé, Nathalie
|b 3
700 1 _ |a Rollet-Labelle, Emmanuelle
|b 4
700 1 _ |a Zhao, Chenqi
|b 5
700 1 _ |a Hongu, Tsunaki
|0 P:(DE-He78)876d213ee6559a5e98ddf2113698ed0b
|b 6
|u dkfz
700 1 _ |a Funakoshi, Yuji
|b 7
700 1 _ |a Kanaho, Yasunori
|b 8
700 1 _ |a Aoudji, Fawzi
|b 9
700 1 _ |a Pelletier, Martin
|b 10
700 1 _ |a Bourgoin, Sylvain G
|b 11
773 _ _ |a 10.1016/j.freeradbiomed.2021.07.001
|g Vol. 172, p. 550 - 561
|0 PERI:(DE-600)1483653-1
|p 550 - 561
|t Free radical biology and medicine
|v 172
|y 2021
|x 0891-5849
909 C O |o oai:inrepo02.dkfz.de:169804
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)876d213ee6559a5e98ddf2113698ed0b
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-311
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Signalling pathways, cell and tumor biology
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FREE RADICAL BIO MED : 2019
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-04
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-04
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FREE RADICAL BIO MED : 2019
|d 2021-02-04
920 1 _ |0 I:(DE-He78)A014-20160331
|k A014
|l A014 Metastatische Nischen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A014-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21