001     169807
005     20240229133656.0
024 7 _ |a 10.1016/j.compbiomed.2021.104624
|2 doi
024 7 _ |a pmid:34247131
|2 pmid
024 7 _ |a 0010-4825
|2 ISSN
024 7 _ |a 1879-0534
|2 ISSN
024 7 _ |a altmetric:108779899
|2 altmetric
037 _ _ |a DKFZ-2021-01561
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Aldraimli, Mahmoud
|b 0
245 _ _ |a A data science approach for early-stage prediction of Patient's susceptibility to acute side effects of advanced radiotherapy.
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1626094424_13917
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The prediction by classification of side effects incidence in a given medical treatment is a common challenge in medical research. Machine Learning (ML) methods are widely used in the areas of risk prediction and classification. The primary objective of such algorithms is to use several features to predict dichotomous responses (e.g., disease positive/negative). Similar to statistical inference modelling, ML modelling is subject to the class imbalance problem and is affected by the majority class, increasing the false-negative rate. In this study, seventy-nine ML models were built and evaluated to classify approximately 2000 participants from 26 hospitals in eight different countries into two groups of radiotherapy (RT) side effects incidence based on recorded observations from the international study of RT related toxicity 'REQUITE'. We also examined the effect of sampling techniques and cost-sensitive learning methods on the models when dealing with class imbalance. The combinations of such techniques used had a significant impact on the classification. They resulted in an improvement in incidence status prediction by shifting classifiers' attention to the minority group. The best classification model for RT acute toxicity prediction was identified based on domain experts' success criteria. The Area Under Receiver Operator Characteristic curve of the models tested with an isolated dataset ranged from 0.50 to 0.77. The scale of improved results is promising and will guide further development of models to predict RT acute toxicities. One model was optimised and found to be beneficial to identify patients who are at risk of developing acute RT early-stage toxicities as a result of undergoing breast RT ensuring relevant treatment interventions can be appropriately targeted. The design of the approach presented in this paper resulted in producing a preclinical-valid prediction model. The study was developed by a multi-disciplinary collaboration of data scientists, medical physicists, oncologists and surgeons in the UK Radiotherapy Machine Learning Network.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a Classification
|2 Other
650 _ 7 |a Desquamation
|2 Other
650 _ 7 |a Early toxicities
|2 Other
650 _ 7 |a Imbalanced learning
|2 Other
650 _ 7 |a Machine learning
|2 Other
650 _ 7 |a Meta-learning
|2 Other
650 _ 7 |a REQUITE
|2 Other
650 _ 7 |a Radiotherapy
|2 Other
650 _ 7 |a SMOTE
|2 Other
700 1 _ |a Soria, Daniele
|b 1
700 1 _ |a Grishchuck, Diana
|b 2
700 1 _ |a Ingram, Samuel
|b 3
700 1 _ |a Lyon, Robert
|b 4
700 1 _ |a Mistry, Anil
|b 5
700 1 _ |a Oliveira, Jorge
|b 6
700 1 _ |a Samuel, Robert
|b 7
700 1 _ |a Shelley, Leila E A
|b 8
700 1 _ |a Osman, Sarah
|b 9
700 1 _ |a Dwek, Miriam V
|b 10
700 1 _ |a Azria, David
|b 11
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 12
|u dkfz
700 1 _ |a Gutiérrez-Enríquez, Sara
|b 13
700 1 _ |a De Santis, Maria Carmen
|b 14
700 1 _ |a Rosenstein, Barry S
|b 15
700 1 _ |a De Ruysscher, Dirk
|b 16
700 1 _ |a Sperk, Elena
|b 17
700 1 _ |a Symonds, R Paul
|b 18
700 1 _ |a Stobart, Hilary
|b 19
700 1 _ |a Vega, Ana
|b 20
700 1 _ |a Veldeman, Liv
|b 21
700 1 _ |a Webb, Adam
|b 22
700 1 _ |a Talbot, Christopher J
|b 23
700 1 _ |a West, Catharine M
|b 24
700 1 _ |a Rattay, Tim
|b 25
700 1 _ |a consortium, REQUITE
|b 26
|e Collaboration Author
700 1 _ |a Chaussalet, Thierry J
|b 27
773 _ _ |a 10.1016/j.compbiomed.2021.104624
|g Vol. 135, p. 104624 -
|0 PERI:(DE-600)1496984-1
|p 104624
|t Computers in biology and medicine
|v 135
|y 2021
|x 0010-4825
909 C O |o oai:inrepo02.dkfz.de:169807
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT BIOL MED : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-30
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21