000169830 001__ 169830 000169830 005__ 20240229133656.0 000169830 0247_ $$2doi$$a10.1002/mp.15096 000169830 0247_ $$2pmid$$apmid:34260079 000169830 0247_ $$2ISSN$$a0094-2405 000169830 0247_ $$2ISSN$$a1522-8541 000169830 0247_ $$2ISSN$$a2473-4209 000169830 0247_ $$2altmetric$$aaltmetric:109528381 000169830 037__ $$aDKFZ-2021-01574 000169830 041__ $$aEnglish 000169830 082__ $$a610 000169830 1001_ $$0P:(DE-He78)8b9e41d8fdbc77efc053f339f24458f2$$aMarot, Mathieu$$b0$$eFirst author$$udkfz 000169830 245__ $$aTechnical Note: On the feasibility of performing dosimetry in target and organ at risk using polymer dosimetry gel and thermoluminescence detectors in an anthropomorphic, deformable and multimodal pelvis phantom. 000169830 260__ $$aCollege Park, Md.$$bAAPM$$c2021 000169830 3367_ $$2DRIVER$$aarticle 000169830 3367_ $$2DataCite$$aOutput Types/Journal article 000169830 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642167141_11420 000169830 3367_ $$2BibTeX$$aARTICLE 000169830 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000169830 3367_ $$00$$2EndNote$$aJournal Article 000169830 500__ $$a#EA:E040#LA:E040# / 2021 Sep;48(9):5501-5510 000169830 520__ $$aTo assess the feasibility of performing dose measurements in the target (prostate) and an adjacent organ at risk (rectum) using polymer dosimetry gel and thermoluminescence detectors (TLDs) in an anthropomorphic, deformable and multimodal pelvis phantom (ADAM PETer).The 3D printed prostate organ surrogate of the ADAM PETer phantom was filled with polymer dosimetry gel. Nine TLD600 (LiF:Mg,Ti) were installed in 3x3 rows on a specifically designed 3D-printed TLD holder. The TLD holder was inserted into the rectum at the level of the prostate and fixed by a partially inflated endorectal balloon. Computed tomography (CT) images were taken and treatment planning was performed. A prescribed dose of 4.5 Gy was delivered to the planning target volume (PTV). The doses measured by the dosimetry gel in the prostate and the TLDs in the rectum ('measured dose') were compared to the doses calculated by the treatment planning system ('planned dose') on a voxel-by-voxel basis.In the prostate organ surrogate, the 3D-γ-index was 97.7% for the 3% dose difference and 3 mm distance to agreement criterium. In the center of the prostate organ surrogate, measured and planned doses showed only minor deviations (<0.1 Gy, corresponding to a percentage error of 2.22%). On the edges of the prostate, slight differences between planned and measured doses were detected with a maximum deviation of 0.24 Gy, corresponding to 5.3% of the prescribed dose. The difference between planned and measured doses in the TLDs was on average 0.08 Gy (range: 0.02-0.21 Gy), corresponding to 1.78% of the prescribed dose (range: 0.44-4.67%).The present study demonstrates the feasibility of using polymer dosimetry gel and TLDs for 3D and 1D dose measurements in the prostate and the rectum organ surrogates in an anthropomorphic, deformable and multimodal phantom. The described methodology might offer new perspectives for end-to-end tests in image-guided adaptive radiotherapy workflows. 000169830 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0 000169830 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de 000169830 650_7 $$2Other$$a3D dosimetry 000169830 650_7 $$2Other$$aTLD 000169830 650_7 $$2Other$$aanthropomorphic phantom 000169830 650_7 $$2Other$$apolymer dosimetry gel 000169830 650_7 $$2Other$$athermoluminescence dosimetry 000169830 7001_ $$0P:(DE-He78)d6ff1f04f2e927518e4290cc7dec3133$$aElter, Alina$$b1$$udkfz 000169830 7001_ $$0P:(DE-He78)d26409e0d07007daf771142a945102ef$$aMann, Philipp$$b2$$udkfz 000169830 7001_ $$0P:(DE-He78)8918404541688dee7976f7546be900fe$$aSchwahofer, Andrea$$b3$$udkfz 000169830 7001_ $$0P:(DE-He78)2c5517db7bc397f9b14ae357a7ce54ff$$aLang, Clemens$$b4$$udkfz 000169830 7001_ $$0P:(DE-He78)5c55eb63ee2ad2499f7dda0ed08c571b$$aJohnen, Wibke$$b5$$udkfz 000169830 7001_ $$aKörber, Stefan A$$b6 000169830 7001_ $$0P:(DE-HGF)0$$aBeuthien-Bauman, Bettina$$b7 000169830 7001_ $$0P:(DE-He78)a7fec7d808abe2d2579a48df08c0f0ad$$aGillmann, Clarissa$$b8$$eLast author$$udkfz 000169830 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.15096$$gp. mp.15096$$n9$$p5501-5510$$tMedical physics$$v48$$x2473-4209$$y2021 000169830 909CO $$ooai:inrepo02.dkfz.de:169830$$pVDB 000169830 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8b9e41d8fdbc77efc053f339f24458f2$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000169830 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d6ff1f04f2e927518e4290cc7dec3133$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000169830 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d26409e0d07007daf771142a945102ef$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ 000169830 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8918404541688dee7976f7546be900fe$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ 000169830 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2c5517db7bc397f9b14ae357a7ce54ff$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ 000169830 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5c55eb63ee2ad2499f7dda0ed08c571b$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ 000169830 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ 000169830 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a7fec7d808abe2d2579a48df08c0f0ad$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ 000169830 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0 000169830 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0 000169830 9141_ $$y2021 000169830 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-02$$wger 000169830 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02 000169830 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-02 000169830 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02 000169830 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-02 000169830 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02 000169830 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-02-02 000169830 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02 000169830 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02 000169830 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2019$$d2021-02-02 000169830 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02 000169830 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02 000169830 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02 000169830 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02 000169830 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0 000169830 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x1 000169830 980__ $$ajournal 000169830 980__ $$aVDB 000169830 980__ $$aI:(DE-He78)E040-20160331 000169830 980__ $$aI:(DE-He78)E010-20160331 000169830 980__ $$aUNRESTRICTED