000169833 001__ 169833
000169833 005__ 20240229133657.0
000169833 0247_ $$2doi$$a10.1080/0284186X.2021.1949037
000169833 0247_ $$2pmid$$apmid:34259117
000169833 0247_ $$2ISSN$$a0284-186X
000169833 0247_ $$2ISSN$$a1100-1704
000169833 0247_ $$2ISSN$$a1651-226X
000169833 0247_ $$2ISSN$$a1651-2499
000169833 0247_ $$2altmetric$$aaltmetric:109453977
000169833 037__ $$aDKFZ-2021-01577
000169833 041__ $$aEnglish
000169833 082__ $$a610
000169833 1001_ $$00000-0003-4879-771X$$aPettersen, Helge Egil Seime$$b0
000169833 245__ $$aInvestigating particle track topology for range telescopes in particle radiography using convolutional neural networks.
000169833 260__ $$aAbingdon$$bTaylor & Francis Group$$c2021
000169833 3367_ $$2DRIVER$$aarticle
000169833 3367_ $$2DataCite$$aOutput Types/Journal article
000169833 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642168116_11420
000169833 3367_ $$2BibTeX$$aARTICLE
000169833 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000169833 3367_ $$00$$2EndNote$$aJournal Article
000169833 500__ $$a2021 Nov;60(11):1413-1418
000169833 520__ $$aProton computed tomography (pCT) and radiography (pRad) are proposed modalities for improved treatment plan accuracy and in situ treatment validation in proton therapy. The pCT system of the Bergen pCT collaboration is able to handle very high particle intensities by means of track reconstruction. However, incorrectly reconstructed and secondary tracks degrade the image quality. We have investigated whether a convolutional neural network (CNN)-based filter is able to improve the image quality.The CNN was trained by simulation and reconstruction of tens of millions of proton and helium tracks. The CNN filter was then compared to simple energy loss threshold methods using the Area Under the Receiver Operating Characteristics curve (AUROC), and by comparing the image quality and Water Equivalent Path Length (WEPL) error of proton and helium radiographs filtered with the same methods.The CNN method led to a considerable improvement of the AUROC, from 74.3% to 97.5% with protons and from 94.2% to 99.5% with helium. The CNN filtering reduced the WEPL error in the helium radiograph from 1.03 mm to 0.93 mm while no improvement was seen in the CNN filtered pRads.The CNN improved the filtering of proton and helium tracks. Only in the helium radiograph did this lead to improved image quality.
000169833 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000169833 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000169833 650_7 $$2Other$$aMonte Carlo simulation
000169833 650_7 $$2Other$$aProton computed tomography
000169833 650_7 $$2Other$$aconvolutional neural network
000169833 650_7 $$2Other$$amachine learning
000169833 650_7 $$2Other$$asecondary particles
000169833 650_7 $$2Other$$atrack reconstruction
000169833 7001_ $$aAehle, Max$$b1
000169833 7001_ $$00000-0003-0177-0536$$aAlme, Johan$$b2
000169833 7001_ $$00000-0001-9223-6480$$aBarnaföldi, Gergely Gábor$$b3
000169833 7001_ $$00000-0002-5579-8932$$aBorshchov, Vyacheslav$$b4
000169833 7001_ $$00000-0003-2366-7257$$avan den Brink, Anthony$$b5
000169833 7001_ $$aChaar, Mamdouh$$b6
000169833 7001_ $$aEikeland, Viljar$$b7
000169833 7001_ $$aFeofilov, Grigory$$b8
000169833 7001_ $$00000-0003-1669-8549$$aGarth, Christoph$$b9
000169833 7001_ $$00000-0002-5863-7384$$aGauger, Nicolas R$$b10
000169833 7001_ $$00000-0002-6663-1433$$aGenov, Georgi$$b11
000169833 7001_ $$00000-0003-0761-7401$$aGrøttvik, Ola$$b12
000169833 7001_ $$00000-0002-9335-9076$$aHelstrup, Håvard$$b13
000169833 7001_ $$aIgolkin, Sergey$$b14
000169833 7001_ $$00000-0002-1474-6191$$aKeidel, Ralf$$b15
000169833 7001_ $$00000-0001-7296-5248$$aKobdaj, Chinorat$$b16
000169833 7001_ $$00000-0002-0987-8544$$aKortus, Tobias$$b17
000169833 7001_ $$aLeonhardt, Viktor$$b18
000169833 7001_ $$aMehendale, Shruti$$b19
000169833 7001_ $$00000-0002-0180-8517$$aMulawade, Raju Ningappa$$b20
000169833 7001_ $$00000-0001-8024-8556$$aOdland, Odd Harald$$b21
000169833 7001_ $$00000-0001-5038-678X$$aPapp, Gábor$$b22
000169833 7001_ $$00000-0002-7116-899X$$aPeitzmann, Thomas$$b23
000169833 7001_ $$aPiersimoni, Pierluigi$$b24
000169833 7001_ $$00000-0001-9313-1701$$aProtsenko, Maksym$$b25
000169833 7001_ $$aRehman, Attiq Ur$$b26
000169833 7001_ $$aRichter, Matthias$$b27
000169833 7001_ $$aSantana, Joshua$$b28
000169833 7001_ $$00000-0001-8802-3247$$aSchilling, Alexander$$b29
000169833 7001_ $$0P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aSeco, Joao$$b30$$udkfz
000169833 7001_ $$aSongmoolnak, Arnon$$b31
000169833 7001_ $$00000-0002-8327-8248$$aSølie, Jarle Rambo$$b32
000169833 7001_ $$00000-0001-7174-3379$$aTambave, Ganesh$$b33
000169833 7001_ $$00000-0002-6436-7253$$aTymchuk, Ihor$$b34
000169833 7001_ $$00000-0002-0002-8834$$aUllaland, Kjetil$$b35
000169833 7001_ $$aVarga-Kofarago, Monika$$b36
000169833 7001_ $$aVolz, Lennart$$b37
000169833 7001_ $$aWagner, Boris$$b38
000169833 7001_ $$00000-0002-1913-5912$$aWendzel, Steffen$$b39
000169833 7001_ $$00000-0002-6583-3092$$aWiebel, Alexander$$b40
000169833 7001_ $$aXiao, RenZheng$$b41
000169833 7001_ $$aYang, Shiming$$b42
000169833 7001_ $$aYokoyama, Hiroki$$b43
000169833 7001_ $$00000-0003-3360-1251$$aZillien, Sebastian$$b44
000169833 7001_ $$aRöhrich, Dieter$$b45
000169833 773__ $$0PERI:(DE-600)1492623-4$$a10.1080/0284186X.2021.1949037$$gp. 1 - 6$$n11$$p1413-1418$$tActa oncologica$$v60$$x0001-6926$$y2021
000169833 909CO $$ooai:inrepo02.dkfz.de:169833$$pVDB
000169833 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aDeutsches Krebsforschungszentrum$$b30$$kDKFZ
000169833 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000169833 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000169833 9141_ $$y2021
000169833 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000169833 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000169833 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA ONCOL : 2019$$d2021-01-30
000169833 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000169833 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000169833 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000169833 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000169833 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-30
000169833 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000169833 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-30
000169833 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000169833 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000169833 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000169833 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000169833 9201_ $$0I:(DE-He78)E041-20160331$$kE041$$lE041 Medizinische Physik in der Radioonkologie$$x0
000169833 980__ $$ajournal
000169833 980__ $$aVDB
000169833 980__ $$aI:(DE-He78)E041-20160331
000169833 980__ $$aUNRESTRICTED