001     169833
005     20240229133657.0
024 7 _ |a 10.1080/0284186X.2021.1949037
|2 doi
024 7 _ |a pmid:34259117
|2 pmid
024 7 _ |a 0284-186X
|2 ISSN
024 7 _ |a 1100-1704
|2 ISSN
024 7 _ |a 1651-226X
|2 ISSN
024 7 _ |a 1651-2499
|2 ISSN
024 7 _ |a altmetric:109453977
|2 altmetric
037 _ _ |a DKFZ-2021-01577
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Pettersen, Helge Egil Seime
|0 0000-0003-4879-771X
|b 0
245 _ _ |a Investigating particle track topology for range telescopes in particle radiography using convolutional neural networks.
260 _ _ |a Abingdon
|c 2021
|b Taylor & Francis Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642168116_11420
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2021 Nov;60(11):1413-1418
520 _ _ |a Proton computed tomography (pCT) and radiography (pRad) are proposed modalities for improved treatment plan accuracy and in situ treatment validation in proton therapy. The pCT system of the Bergen pCT collaboration is able to handle very high particle intensities by means of track reconstruction. However, incorrectly reconstructed and secondary tracks degrade the image quality. We have investigated whether a convolutional neural network (CNN)-based filter is able to improve the image quality.The CNN was trained by simulation and reconstruction of tens of millions of proton and helium tracks. The CNN filter was then compared to simple energy loss threshold methods using the Area Under the Receiver Operating Characteristics curve (AUROC), and by comparing the image quality and Water Equivalent Path Length (WEPL) error of proton and helium radiographs filtered with the same methods.The CNN method led to a considerable improvement of the AUROC, from 74.3% to 97.5% with protons and from 94.2% to 99.5% with helium. The CNN filtering reduced the WEPL error in the helium radiograph from 1.03 mm to 0.93 mm while no improvement was seen in the CNN filtered pRads.The CNN improved the filtering of proton and helium tracks. Only in the helium radiograph did this lead to improved image quality.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a Monte Carlo simulation
|2 Other
650 _ 7 |a Proton computed tomography
|2 Other
650 _ 7 |a convolutional neural network
|2 Other
650 _ 7 |a machine learning
|2 Other
650 _ 7 |a secondary particles
|2 Other
650 _ 7 |a track reconstruction
|2 Other
700 1 _ |a Aehle, Max
|b 1
700 1 _ |a Alme, Johan
|0 0000-0003-0177-0536
|b 2
700 1 _ |a Barnaföldi, Gergely Gábor
|0 0000-0001-9223-6480
|b 3
700 1 _ |a Borshchov, Vyacheslav
|0 0000-0002-5579-8932
|b 4
700 1 _ |a van den Brink, Anthony
|0 0000-0003-2366-7257
|b 5
700 1 _ |a Chaar, Mamdouh
|b 6
700 1 _ |a Eikeland, Viljar
|b 7
700 1 _ |a Feofilov, Grigory
|b 8
700 1 _ |a Garth, Christoph
|0 0000-0003-1669-8549
|b 9
700 1 _ |a Gauger, Nicolas R
|0 0000-0002-5863-7384
|b 10
700 1 _ |a Genov, Georgi
|0 0000-0002-6663-1433
|b 11
700 1 _ |a Grøttvik, Ola
|0 0000-0003-0761-7401
|b 12
700 1 _ |a Helstrup, Håvard
|0 0000-0002-9335-9076
|b 13
700 1 _ |a Igolkin, Sergey
|b 14
700 1 _ |a Keidel, Ralf
|0 0000-0002-1474-6191
|b 15
700 1 _ |a Kobdaj, Chinorat
|0 0000-0001-7296-5248
|b 16
700 1 _ |a Kortus, Tobias
|0 0000-0002-0987-8544
|b 17
700 1 _ |a Leonhardt, Viktor
|b 18
700 1 _ |a Mehendale, Shruti
|b 19
700 1 _ |a Mulawade, Raju Ningappa
|0 0000-0002-0180-8517
|b 20
700 1 _ |a Odland, Odd Harald
|0 0000-0001-8024-8556
|b 21
700 1 _ |a Papp, Gábor
|0 0000-0001-5038-678X
|b 22
700 1 _ |a Peitzmann, Thomas
|0 0000-0002-7116-899X
|b 23
700 1 _ |a Piersimoni, Pierluigi
|b 24
700 1 _ |a Protsenko, Maksym
|0 0000-0001-9313-1701
|b 25
700 1 _ |a Rehman, Attiq Ur
|b 26
700 1 _ |a Richter, Matthias
|b 27
700 1 _ |a Santana, Joshua
|b 28
700 1 _ |a Schilling, Alexander
|0 0000-0001-8802-3247
|b 29
700 1 _ |a Seco, Joao
|0 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe
|b 30
|u dkfz
700 1 _ |a Songmoolnak, Arnon
|b 31
700 1 _ |a Sølie, Jarle Rambo
|0 0000-0002-8327-8248
|b 32
700 1 _ |a Tambave, Ganesh
|0 0000-0001-7174-3379
|b 33
700 1 _ |a Tymchuk, Ihor
|0 0000-0002-6436-7253
|b 34
700 1 _ |a Ullaland, Kjetil
|0 0000-0002-0002-8834
|b 35
700 1 _ |a Varga-Kofarago, Monika
|b 36
700 1 _ |a Volz, Lennart
|b 37
700 1 _ |a Wagner, Boris
|b 38
700 1 _ |a Wendzel, Steffen
|0 0000-0002-1913-5912
|b 39
700 1 _ |a Wiebel, Alexander
|0 0000-0002-6583-3092
|b 40
700 1 _ |a Xiao, RenZheng
|b 41
700 1 _ |a Yang, Shiming
|b 42
700 1 _ |a Yokoyama, Hiroki
|b 43
700 1 _ |a Zillien, Sebastian
|0 0000-0003-3360-1251
|b 44
700 1 _ |a Röhrich, Dieter
|b 45
773 _ _ |a 10.1080/0284186X.2021.1949037
|g p. 1 - 6
|0 PERI:(DE-600)1492623-4
|n 11
|p 1413-1418
|t Acta oncologica
|v 60
|y 2021
|x 0001-6926
909 C O |p VDB
|o oai:inrepo02.dkfz.de:169833
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 30
|6 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA ONCOL : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-30
920 1 _ |0 I:(DE-He78)E041-20160331
|k E041
|l E041 Medizinische Physik in der Radioonkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E041-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21