000169846 001__ 169846
000169846 005__ 20240229140928.0
000169846 0247_ $$2doi$$a10.3324/haematol.2021.266643
000169846 0247_ $$2pmid$$apmid:34261293
000169846 0247_ $$2ISSN$$a0390-6078
000169846 0247_ $$2ISSN$$a1592-8721
000169846 0247_ $$2altmetric$$aaltmetric:109566548
000169846 037__ $$aDKFZ-2021-01589
000169846 041__ $$aEnglish
000169846 082__ $$a610
000169846 1001_ $$aPapaioannou, Dimitrios$$b0
000169846 245__ $$aClinical and molecular relevance of genetic variants in the non-coding transcriptome of patients with cytogenetically normal acute myeloid leukemia.
000169846 260__ $$aPavia$$bFerrata Storti Found$$c2022
000169846 264_1 $$2Crossref$$3online$$bFerrata Storti Foundation (Haematologica)$$c2021-07-15
000169846 3367_ $$2DRIVER$$aarticle
000169846 3367_ $$2DataCite$$aOutput Types/Journal article
000169846 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1651651578_5876
000169846 3367_ $$2BibTeX$$aARTICLE
000169846 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000169846 3367_ $$00$$2EndNote$$aJournal Article
000169846 500__ $$a2022 May 1;107(5):1034-1044
000169846 520__ $$aExpression levels of long non-coding RNAs (lncRNAs) have been shown to associate with clinical outcome of patients with cytogenetically normal acute myeloid leukemia (CN-AML). However, the frequency and clinical significance of genetic variants in the nucleotide sequences of lncRNAs in AML patients is unknown. Herein, we analyzed total RNA sequencing data of 377 younger adults (aged.
000169846 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000169846 542__ $$2Crossref$$i2021-07-15$$uhttp://creativecommons.org/licenses/by-nc/4.0/
000169846 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000169846 7001_ $$aOzer, Hatice G$$b1
000169846 7001_ $$aNicolet, Deedra$$b2
000169846 7001_ $$aUrs, Amog P$$b3
000169846 7001_ $$0P:(DE-HGF)0$$aHerold, Tobias$$b4
000169846 7001_ $$aMrózek, Krzysztof$$b5
000169846 7001_ $$aBatcha, Aarif M N$$b6
000169846 7001_ $$aMetzeler, Klaus H$$b7
000169846 7001_ $$aYilmaz, Ayse S$$b8
000169846 7001_ $$aVolinia, Stefano$$b9
000169846 7001_ $$aBill, Marius$$b10
000169846 7001_ $$aKohlschmidt, Jessica$$b11
000169846 7001_ $$aPietrzak, Maciej$$b12
000169846 7001_ $$aWalker, Christopher J$$b13
000169846 7001_ $$aCarroll, Andrew J$$b14
000169846 7001_ $$aBraess, Jan$$b15
000169846 7001_ $$aPowell, Bayard L$$b16
000169846 7001_ $$aEisfeld, Ann-Kathrin$$b17
000169846 7001_ $$aUy, Geoffrey L$$b18
000169846 7001_ $$aWang, Eunice S$$b19
000169846 7001_ $$aKolitz, Jonathan E$$b20
000169846 7001_ $$aStone, Richard M$$b21
000169846 7001_ $$0P:(DE-HGF)0$$aHiddemann, Wolfgang$$b22
000169846 7001_ $$aByrd, John C$$b23
000169846 7001_ $$aBloomfield, Clara D$$b24
000169846 7001_ $$aGarzon, Ramiro$$b25
000169846 77318 $$2Crossref$$3journal-article$$a10.3324/haematol.2021.266643$$bFerrata Storti Foundation (Haematologica)$$d2021-07-15$$n5$$p1034-1044$$tHaematologica$$v107$$x1592-8721$$y2021
000169846 773__ $$0PERI:(DE-600)2805244-4$$a10.3324/haematol.2021.266643$$n5$$p1034-1044$$tHaematologica$$v107$$x1592-8721$$y2021
000169846 909CO $$ooai:inrepo02.dkfz.de:169846$$pVDB
000169846 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000169846 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b22$$kDKFZ
000169846 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000169846 9130_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000169846 9141_ $$y2021
000169846 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-06-12
000169846 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-06-12
000169846 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-06-12
000169846 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-06-12
000169846 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-06-12
000169846 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000169846 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000169846 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-11T15:43:53Z
000169846 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-11T15:43:53Z
000169846 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-08-11T15:43:53Z
000169846 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000169846 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000169846 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-23
000169846 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-23
000169846 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-23
000169846 9201_ $$0I:(DE-He78)MU01-20160331$$kMU01$$lDKTK MU LMU zentral$$x0
000169846 980__ $$ajournal
000169846 980__ $$aVDB
000169846 980__ $$aI:(DE-He78)MU01-20160331
000169846 980__ $$aUNRESTRICTED
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMra1406184$$uDöhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015; 373(12):1136-1152.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2016-08-733196$$uDöhner H, Estey E, Grimwade D. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017; 129(4):424-447.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2002-03-0772$$uByrd JC, Mrózek K, Dodge RK. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002; 100(13):4325-4336.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2009-11-254441$$uGrimwade D, Hills RK, Moorman AV. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010; 116(3):354-365.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0268-960X(03)00040-7$$uMrózek K, Heerema NA, Bloomfield CD. Cytogenetics in acute leukemia. Blood Rev. 2004; 18(2):115-136.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa1516192$$uPapaemmanuil E, Gerstung M, Bullinger L. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016; 374(23):2209-2221.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa1112304$$uPatel JP, Gönen M, Figueroa ME. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012; 366(12):1079-1089.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa1301689$$uCancer Genome Atlas Research Network, Ley TJ, Miller C. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013; 368(22):2059-2074.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2016-01-693879$$uMetzeler KH, Herold T, Rothenberg-Thurley M. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. 2016; 128(5):686-698.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41375-018-0068-2$$uEisfeld A-K, Kohlschmidt J, Mrózek K. Mutation patterns identify adult patients with de novo acute myeloid leukemia aged 60 years or older who respond favorably to standard chemotherapy: an analysis of Alliance studies. Leukemia. 2018; 32(6):1338-1348.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2006-06-001149$$uMrózek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification?. Blood. 2007; 109(2):431-448.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa040465$$uValk PJM, Verhaak RGW, Beijen MA. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004; 350(16):1617-1628.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2008-02-134411$$uMetzeler KH, Hummel M, Bloomfield CD. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood. 2008; 112(10):4193-4201.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1200/JCO.2012.44.3184$$uLi Z, Herold T, He C. Identification of a 24-gene prognostic signature that improves the European LeukemiaNet risk classification of acute myeloid leukemia: an international collaborative study. J Clin Oncol. 2013; 31(9):1172-1181.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1200/JCO.2013.50.6337$$uMarcucci G, Yan P, Maharry K. Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel sevengene score. J Clin Oncol. 2014; 32(6):548-556.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3324/haematol.2017.178442$$uHerold T, Jurinovic V, Batcha AMN. A 29-gene and cytogenetic score for the prediction of resistance to induction treatment in acute myeloid leukemia. Haematologica. 2018; 103(3):456-465.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cell.2012.06.023$$uWelch JS, Ley TJ, Link DC. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012; 150(2):264-278.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ccr.2014.01.031$$uKlco JM, Spencer DH, Miller CA. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell. 2014; 25(3):379-392.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/35057062$$uLander ES, Linton LM, Birren B. Initial sequencing and analysis of the human genome. Nature. 2001; 409(6822):860-921.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1318948111$$uKellis M, Wold B, Snyder MP. Defining functional DNA elements in the human genome. Proc Natl Acad Sci U S A. 2014; 111(17):6131-6138.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tibtech.2005.04.003$$uTaylor J. Clues to function in gene deserts. Trends Biotechnol. 2005; 23(6):269-271.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-biochem-051410-092902$$uRinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012; 81:145-166.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature10887$$uGuttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012; 482(7385):339-346.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.molcel.2011.08.018$$uWang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011; 43(6):904-914.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature08975$$uGupta RA, Shah N, Wang KC. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010; 464(7291):1071-1076.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature17161$$uLeucci E, Vendramin R, Spinazzi M. Melanoma addiction to the long non-coding RNA SAMMSON. Nature. 2016; 531(7595):518-522.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cell.2014.05.049$$uTrimarchi T, Bilal E, Ntziachristos P. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell. 2014; 158(3):593-606.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-019-13259-2$$uPapaioannou D, Petri A, Dovey OM. The long non-coding RNA HOXB-AS3 regulates ribosomal RNA transcription in NPM1-mutated acute myeloid leukemia. Nat Commun. 2019; 10(1):5351.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/sj.onc.1206928$$uJi P, Diederichs S, Wang W. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003; 22(39):8031-8041.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3324/haematol.2017.166215$$uPapaioannou D, Nicolet D, Volinia S. Prognostic and biologic significance of long non-coding RNA profiling in younger adults with cytogenetically normal acute myeloid leukemia. Haematologica. 2017; 102(8):1391-1400.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1422050112$$uGarzon R, Volinia S, Papaioannou D. Expression and prognostic impact of lncRNAs in acute myeloid leukemia. Proc Natl Acad Sci U S A. 2014; 111(52):18679-18684.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/leu.2017.210$$uBeck D, Thoms JAI, Palu C. A fourgene LincRNA expression signature predicts risk in multiple cohorts of acute myeloid leukemia patients. Leukemia. 2018; 32(2):263-272.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1186/s13045-018-0596-2$$uMer AS, Lindberg J, Nilsson C. Expression levels of long non-coding RNAs are prognostic for AML outcome. J Hematol Oncol. 2018; 11(1):52.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ccell.2015.09.006$$uYan X, Hu Z, Feng Y. Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell. 2015; 28(4):529-540.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ng.3192$$uIyer MK, Niknafs YS, Malik R. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015; 47(3):199-208.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-017-00212-4$$uSchwarzer A, Emmrich S, Schmidt F. The non-coding RNA landscape of human hematopoiesis and leukemia. Nat Commun. 2017; 8(1):218.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1001/jama.2015.9643$$uKlco JM, Miller CA, Griffith M. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. JAMA. 2015; 314(8):811-822.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1200/JCO.2005.04.5013$$uBüchner T, Berdel WE, Schoch C. Double induction containing either two courses or one course of high-dose cytarabine plus mitoxantrone and postremission therapy by either autologous stem-cell transplantation or by prolonged maintenance for acute myeloid leukemia. J Clin Oncol. 2006; 24(16):2480-2489.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41375-018-0268-9$$uBraes J, Amler S, Kreuzer K-A. Sequential high-dose cytarabine and mitoxantrone (S-HAM) versus standard double induction in acute myeloid leukemia―a phase 3 study. Leukemia. 2018; 32(12):2558-2571.
000169846 999C5 $$2Crossref$$uMrózek K, Carroll AJ, Maharry K. Central review of cytogenetics is necessary for cooperative group correlative and clinical studies of adult acute leukemia: the Cancer and Leukemia Group B experience. Int J Oncol. 2008; 33(2):239-244.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/leu.2017.86$$uEisfeld A-K, Mrózek K, Kohlschmidt J. The mutational oncoprint of recurrent cytogenetic abnormalities in adult patients with de novo acute myeloid leukemia. Leukemia. 2017; 31(10):2211-2218.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1200/JCO.2008.17.5554$$uMarcucci G, Maharry K, Radmacher MD. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with highrisk molecular features: a Cancer and Leukemia Group B study. J Clin Oncol. 2008; 26(31):5078-5087.
000169846 999C5 $$2Crossref$$uWhitman SP, Archer KJ, Feng L. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a Cancer and Leukemia Group B study. Cancer Res. 2001; 61(19):7233-7239.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nrg3305$$uNekrutenko A, Taylor J. Next-generation sequencing data interpretation: enhancing reproducibility and accessibility. Nat Rev Genet. 2012; 13(9):667-672.
000169846 999C5 $$2Crossref$$uVittinghoff E, Glidden DV, Shiboski SC, McCulloch CE. Regression methods in biostatistics: linear, logistic, survival and repeated measures models. 2005.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1186/1471-2164-15-419$$uZhao W, He X, Hoadley KA, Parker JS, Hayes DN, Perou CM. Comparison of RNASeq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics. 2014; 15(1):419.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nrg.2015.17$$uKhurana E, Fu Y, Chakravarty D, Demichelis F, Rubin MA, Gerstein M. Role of non-coding sequence variants in cancer. Nat Rev Genet. 2016; 17(2):93-108.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1186/s13046-019-1169-0$$uSaeinasab M, Bahrami AR, González J. SNHG15 is a bifunctional MYC-regulated noncoding locus encoding a lncRNA that promotes cell proliferation, invasion and drug resistance in colorectal cancer by interacting with AIF. J Exp Clin Cancer Res. 2019; 38(1):172.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/jcb.29283$$uYe J, Tan L, Fu Y. LncRNA SNHG15 promotes hepatocellular carcinoma progression by sponging miR-141-3p. J Cell Biochem. 2019; 120(12):19775-19783.
000169846 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbrc.2017.12.013$$uKong Q, Qiu M. Long noncoding RNA SNHG15 promotes human breast cancer proliferation, migration and invasion by sponging miR-211-3p. Biochem Biophys Res Commun. 2018; 495(2):1594-1600.