001     169846
005     20240229140928.0
024 7 _ |a 10.3324/haematol.2021.266643
|2 doi
024 7 _ |a pmid:34261293
|2 pmid
024 7 _ |a 0390-6078
|2 ISSN
024 7 _ |a 1592-8721
|2 ISSN
024 7 _ |a altmetric:109566548
|2 altmetric
037 _ _ |a DKFZ-2021-01589
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Papaioannou, Dimitrios
|b 0
245 _ _ |a Clinical and molecular relevance of genetic variants in the non-coding transcriptome of patients with cytogenetically normal acute myeloid leukemia.
260 _ _ |a Pavia
|c 2022
|b Ferrata Storti Found
264 _ 1 |3 online
|2 Crossref
|b Ferrata Storti Foundation (Haematologica)
|c 2021-07-15
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1651651578_5876
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2022 May 1;107(5):1034-1044
520 _ _ |a Expression levels of long non-coding RNAs (lncRNAs) have been shown to associate with clinical outcome of patients with cytogenetically normal acute myeloid leukemia (CN-AML). However, the frequency and clinical significance of genetic variants in the nucleotide sequences of lncRNAs in AML patients is unknown. Herein, we analyzed total RNA sequencing data of 377 younger adults (aged.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
542 _ _ |i 2021-07-15
|2 Crossref
|u http://creativecommons.org/licenses/by-nc/4.0/
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
700 1 _ |a Ozer, Hatice G
|b 1
700 1 _ |a Nicolet, Deedra
|b 2
700 1 _ |a Urs, Amog P
|b 3
700 1 _ |a Herold, Tobias
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mrózek, Krzysztof
|b 5
700 1 _ |a Batcha, Aarif M N
|b 6
700 1 _ |a Metzeler, Klaus H
|b 7
700 1 _ |a Yilmaz, Ayse S
|b 8
700 1 _ |a Volinia, Stefano
|b 9
700 1 _ |a Bill, Marius
|b 10
700 1 _ |a Kohlschmidt, Jessica
|b 11
700 1 _ |a Pietrzak, Maciej
|b 12
700 1 _ |a Walker, Christopher J
|b 13
700 1 _ |a Carroll, Andrew J
|b 14
700 1 _ |a Braess, Jan
|b 15
700 1 _ |a Powell, Bayard L
|b 16
700 1 _ |a Eisfeld, Ann-Kathrin
|b 17
700 1 _ |a Uy, Geoffrey L
|b 18
700 1 _ |a Wang, Eunice S
|b 19
700 1 _ |a Kolitz, Jonathan E
|b 20
700 1 _ |a Stone, Richard M
|b 21
700 1 _ |a Hiddemann, Wolfgang
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Byrd, John C
|b 23
700 1 _ |a Bloomfield, Clara D
|b 24
700 1 _ |a Garzon, Ramiro
|b 25
773 1 8 |a 10.3324/haematol.2021.266643
|b Ferrata Storti Foundation (Haematologica)
|d 2021-07-15
|n 5
|p 1034-1044
|3 journal-article
|2 Crossref
|t Haematologica
|v 107
|y 2021
|x 1592-8721
773 _ _ |a 10.3324/haematol.2021.266643
|0 PERI:(DE-600)2805244-4
|n 5
|p 1034-1044
|t Haematologica
|v 107
|y 2021
|x 1592-8721
909 C O |p VDB
|o oai:inrepo02.dkfz.de:169846
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 22
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
913 0 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-06-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-06-12
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-06-12
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-06-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-06-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-11T15:43:53Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-11T15:43:53Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-08-11T15:43:53Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-23
920 1 _ |0 I:(DE-He78)MU01-20160331
|k MU01
|l DKTK MU LMU zentral
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)MU01-20160331
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1056/NEJMra1406184
|9 -- missing cx lookup --
|2 Crossref
|u Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015; 373(12):1136-1152.
999 C 5 |a 10.1182/blood-2016-08-733196
|9 -- missing cx lookup --
|2 Crossref
|u Döhner H, Estey E, Grimwade D. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017; 129(4):424-447.
999 C 5 |a 10.1182/blood-2002-03-0772
|9 -- missing cx lookup --
|2 Crossref
|u Byrd JC, Mrózek K, Dodge RK. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002; 100(13):4325-4336.
999 C 5 |a 10.1182/blood-2009-11-254441
|9 -- missing cx lookup --
|2 Crossref
|u Grimwade D, Hills RK, Moorman AV. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010; 116(3):354-365.
999 C 5 |a 10.1016/S0268-960X(03)00040-7
|9 -- missing cx lookup --
|2 Crossref
|u Mrózek K, Heerema NA, Bloomfield CD. Cytogenetics in acute leukemia. Blood Rev. 2004; 18(2):115-136.
999 C 5 |a 10.1056/NEJMoa1516192
|9 -- missing cx lookup --
|2 Crossref
|u Papaemmanuil E, Gerstung M, Bullinger L. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016; 374(23):2209-2221.
999 C 5 |a 10.1056/NEJMoa1112304
|9 -- missing cx lookup --
|2 Crossref
|u Patel JP, Gönen M, Figueroa ME. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012; 366(12):1079-1089.
999 C 5 |a 10.1056/NEJMoa1301689
|9 -- missing cx lookup --
|2 Crossref
|u Cancer Genome Atlas Research Network, Ley TJ, Miller C. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013; 368(22):2059-2074.
999 C 5 |a 10.1182/blood-2016-01-693879
|9 -- missing cx lookup --
|2 Crossref
|u Metzeler KH, Herold T, Rothenberg-Thurley M. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. 2016; 128(5):686-698.
999 C 5 |a 10.1038/s41375-018-0068-2
|9 -- missing cx lookup --
|2 Crossref
|u Eisfeld A-K, Kohlschmidt J, Mrózek K. Mutation patterns identify adult patients with de novo acute myeloid leukemia aged 60 years or older who respond favorably to standard chemotherapy: an analysis of Alliance studies. Leukemia. 2018; 32(6):1338-1348.
999 C 5 |a 10.1182/blood-2006-06-001149
|9 -- missing cx lookup --
|2 Crossref
|u Mrózek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification?. Blood. 2007; 109(2):431-448.
999 C 5 |a 10.1056/NEJMoa040465
|9 -- missing cx lookup --
|2 Crossref
|u Valk PJM, Verhaak RGW, Beijen MA. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004; 350(16):1617-1628.
999 C 5 |a 10.1182/blood-2008-02-134411
|9 -- missing cx lookup --
|2 Crossref
|u Metzeler KH, Hummel M, Bloomfield CD. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood. 2008; 112(10):4193-4201.
999 C 5 |a 10.1200/JCO.2012.44.3184
|9 -- missing cx lookup --
|2 Crossref
|u Li Z, Herold T, He C. Identification of a 24-gene prognostic signature that improves the European LeukemiaNet risk classification of acute myeloid leukemia: an international collaborative study. J Clin Oncol. 2013; 31(9):1172-1181.
999 C 5 |a 10.1200/JCO.2013.50.6337
|9 -- missing cx lookup --
|2 Crossref
|u Marcucci G, Yan P, Maharry K. Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel sevengene score. J Clin Oncol. 2014; 32(6):548-556.
999 C 5 |a 10.3324/haematol.2017.178442
|9 -- missing cx lookup --
|2 Crossref
|u Herold T, Jurinovic V, Batcha AMN. A 29-gene and cytogenetic score for the prediction of resistance to induction treatment in acute myeloid leukemia. Haematologica. 2018; 103(3):456-465.
999 C 5 |a 10.1016/j.cell.2012.06.023
|9 -- missing cx lookup --
|2 Crossref
|u Welch JS, Ley TJ, Link DC. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012; 150(2):264-278.
999 C 5 |a 10.1016/j.ccr.2014.01.031
|9 -- missing cx lookup --
|2 Crossref
|u Klco JM, Spencer DH, Miller CA. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell. 2014; 25(3):379-392.
999 C 5 |a 10.1038/35057062
|9 -- missing cx lookup --
|2 Crossref
|u Lander ES, Linton LM, Birren B. Initial sequencing and analysis of the human genome. Nature. 2001; 409(6822):860-921.
999 C 5 |a 10.1073/pnas.1318948111
|9 -- missing cx lookup --
|2 Crossref
|u Kellis M, Wold B, Snyder MP. Defining functional DNA elements in the human genome. Proc Natl Acad Sci U S A. 2014; 111(17):6131-6138.
999 C 5 |a 10.1016/j.tibtech.2005.04.003
|9 -- missing cx lookup --
|2 Crossref
|u Taylor J. Clues to function in gene deserts. Trends Biotechnol. 2005; 23(6):269-271.
999 C 5 |a 10.1146/annurev-biochem-051410-092902
|9 -- missing cx lookup --
|2 Crossref
|u Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012; 81:145-166.
999 C 5 |a 10.1038/nature10887
|9 -- missing cx lookup --
|2 Crossref
|u Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012; 482(7385):339-346.
999 C 5 |a 10.1016/j.molcel.2011.08.018
|9 -- missing cx lookup --
|2 Crossref
|u Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011; 43(6):904-914.
999 C 5 |a 10.1038/nature08975
|9 -- missing cx lookup --
|2 Crossref
|u Gupta RA, Shah N, Wang KC. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010; 464(7291):1071-1076.
999 C 5 |a 10.1038/nature17161
|9 -- missing cx lookup --
|2 Crossref
|u Leucci E, Vendramin R, Spinazzi M. Melanoma addiction to the long non-coding RNA SAMMSON. Nature. 2016; 531(7595):518-522.
999 C 5 |a 10.1016/j.cell.2014.05.049
|9 -- missing cx lookup --
|2 Crossref
|u Trimarchi T, Bilal E, Ntziachristos P. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell. 2014; 158(3):593-606.
999 C 5 |a 10.1038/s41467-019-13259-2
|9 -- missing cx lookup --
|2 Crossref
|u Papaioannou D, Petri A, Dovey OM. The long non-coding RNA HOXB-AS3 regulates ribosomal RNA transcription in NPM1-mutated acute myeloid leukemia. Nat Commun. 2019; 10(1):5351.
999 C 5 |a 10.1038/sj.onc.1206928
|9 -- missing cx lookup --
|2 Crossref
|u Ji P, Diederichs S, Wang W. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003; 22(39):8031-8041.
999 C 5 |a 10.3324/haematol.2017.166215
|9 -- missing cx lookup --
|2 Crossref
|u Papaioannou D, Nicolet D, Volinia S. Prognostic and biologic significance of long non-coding RNA profiling in younger adults with cytogenetically normal acute myeloid leukemia. Haematologica. 2017; 102(8):1391-1400.
999 C 5 |a 10.1073/pnas.1422050112
|9 -- missing cx lookup --
|2 Crossref
|u Garzon R, Volinia S, Papaioannou D. Expression and prognostic impact of lncRNAs in acute myeloid leukemia. Proc Natl Acad Sci U S A. 2014; 111(52):18679-18684.
999 C 5 |a 10.1038/leu.2017.210
|9 -- missing cx lookup --
|2 Crossref
|u Beck D, Thoms JAI, Palu C. A fourgene LincRNA expression signature predicts risk in multiple cohorts of acute myeloid leukemia patients. Leukemia. 2018; 32(2):263-272.
999 C 5 |a 10.1186/s13045-018-0596-2
|9 -- missing cx lookup --
|2 Crossref
|u Mer AS, Lindberg J, Nilsson C. Expression levels of long non-coding RNAs are prognostic for AML outcome. J Hematol Oncol. 2018; 11(1):52.
999 C 5 |a 10.1016/j.ccell.2015.09.006
|9 -- missing cx lookup --
|2 Crossref
|u Yan X, Hu Z, Feng Y. Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell. 2015; 28(4):529-540.
999 C 5 |a 10.1038/ng.3192
|9 -- missing cx lookup --
|2 Crossref
|u Iyer MK, Niknafs YS, Malik R. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015; 47(3):199-208.
999 C 5 |a 10.1038/s41467-017-00212-4
|9 -- missing cx lookup --
|2 Crossref
|u Schwarzer A, Emmrich S, Schmidt F. The non-coding RNA landscape of human hematopoiesis and leukemia. Nat Commun. 2017; 8(1):218.
999 C 5 |a 10.1001/jama.2015.9643
|9 -- missing cx lookup --
|2 Crossref
|u Klco JM, Miller CA, Griffith M. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. JAMA. 2015; 314(8):811-822.
999 C 5 |a 10.1200/JCO.2005.04.5013
|9 -- missing cx lookup --
|2 Crossref
|u Büchner T, Berdel WE, Schoch C. Double induction containing either two courses or one course of high-dose cytarabine plus mitoxantrone and postremission therapy by either autologous stem-cell transplantation or by prolonged maintenance for acute myeloid leukemia. J Clin Oncol. 2006; 24(16):2480-2489.
999 C 5 |a 10.1038/s41375-018-0268-9
|9 -- missing cx lookup --
|2 Crossref
|u Braes J, Amler S, Kreuzer K-A. Sequential high-dose cytarabine and mitoxantrone (S-HAM) versus standard double induction in acute myeloid leukemia―a phase 3 study. Leukemia. 2018; 32(12):2558-2571.
999 C 5 |2 Crossref
|u Mrózek K, Carroll AJ, Maharry K. Central review of cytogenetics is necessary for cooperative group correlative and clinical studies of adult acute leukemia: the Cancer and Leukemia Group B experience. Int J Oncol. 2008; 33(2):239-244.
999 C 5 |a 10.1038/leu.2017.86
|9 -- missing cx lookup --
|2 Crossref
|u Eisfeld A-K, Mrózek K, Kohlschmidt J. The mutational oncoprint of recurrent cytogenetic abnormalities in adult patients with de novo acute myeloid leukemia. Leukemia. 2017; 31(10):2211-2218.
999 C 5 |a 10.1200/JCO.2008.17.5554
|9 -- missing cx lookup --
|2 Crossref
|u Marcucci G, Maharry K, Radmacher MD. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with highrisk molecular features: a Cancer and Leukemia Group B study. J Clin Oncol. 2008; 26(31):5078-5087.
999 C 5 |2 Crossref
|u Whitman SP, Archer KJ, Feng L. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a Cancer and Leukemia Group B study. Cancer Res. 2001; 61(19):7233-7239.
999 C 5 |a 10.1038/nrg3305
|9 -- missing cx lookup --
|2 Crossref
|u Nekrutenko A, Taylor J. Next-generation sequencing data interpretation: enhancing reproducibility and accessibility. Nat Rev Genet. 2012; 13(9):667-672.
999 C 5 |2 Crossref
|u Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE. Regression methods in biostatistics: linear, logistic, survival and repeated measures models. 2005.
999 C 5 |a 10.1186/1471-2164-15-419
|9 -- missing cx lookup --
|2 Crossref
|u Zhao W, He X, Hoadley KA, Parker JS, Hayes DN, Perou CM. Comparison of RNASeq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics. 2014; 15(1):419.
999 C 5 |a 10.1038/nrg.2015.17
|9 -- missing cx lookup --
|2 Crossref
|u Khurana E, Fu Y, Chakravarty D, Demichelis F, Rubin MA, Gerstein M. Role of non-coding sequence variants in cancer. Nat Rev Genet. 2016; 17(2):93-108.
999 C 5 |a 10.1186/s13046-019-1169-0
|9 -- missing cx lookup --
|2 Crossref
|u Saeinasab M, Bahrami AR, González J. SNHG15 is a bifunctional MYC-regulated noncoding locus encoding a lncRNA that promotes cell proliferation, invasion and drug resistance in colorectal cancer by interacting with AIF. J Exp Clin Cancer Res. 2019; 38(1):172.
999 C 5 |a 10.1002/jcb.29283
|9 -- missing cx lookup --
|2 Crossref
|u Ye J, Tan L, Fu Y. LncRNA SNHG15 promotes hepatocellular carcinoma progression by sponging miR-141-3p. J Cell Biochem. 2019; 120(12):19775-19783.
999 C 5 |a 10.1016/j.bbrc.2017.12.013
|9 -- missing cx lookup --
|2 Crossref
|u Kong Q, Qiu M. Long noncoding RNA SNHG15 promotes human breast cancer proliferation, migration and invasion by sponging miR-211-3p. Biochem Biophys Res Commun. 2018; 495(2):1594-1600.


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21