000169862 001__ 169862
000169862 005__ 20240229133658.0
000169862 0247_ $$2doi$$a10.1016/j.jmb.2021.167157
000169862 0247_ $$2pmid$$apmid:34271010
000169862 0247_ $$2ISSN$$a0022-2836
000169862 0247_ $$2ISSN$$a1089-8638
000169862 0247_ $$2altmetric$$aaltmetric:109738157
000169862 037__ $$aDKFZ-2021-01596
000169862 041__ $$aEnglish
000169862 082__ $$a610
000169862 1001_ $$aReinle, Kevin$$b0
000169862 245__ $$aThe diverse functions of small heat shock proteins in the proteostasis network.
000169862 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2022
000169862 3367_ $$2DRIVER$$aarticle
000169862 3367_ $$2DataCite$$aOutput Types/Journal article
000169862 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642168606_13476$$xReview Article
000169862 3367_ $$2BibTeX$$aARTICLE
000169862 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000169862 3367_ $$00$$2EndNote$$aJournal Article
000169862 500__ $$a#LA:A250# /2022 Jan 15;434(1):167157 / DKFZ-ZMBH Alliance
000169862 520__ $$aThe protein quality control (PQC) system maintains protein homeostasis by counteracting the accumulation of misfolded protein conformers. Substrate degradation and refolding activities executed by ATP-dependent proteases and chaperones constitute major strategies of the proteostasis network. Small heat shock proteins represent ATP-independent chaperones that bind to misfolded proteins, preventing their uncontrolled aggregation. sHsps share the conserved α-crystallin domain (ACD) and gain functional specificity through variable and largely disordered N- and C-terminal extensions (NTE, CTE). They form large, polydisperse oligomers through multiple, weak interactions between NTE/CTEs and ACD dimers. Sequence variations of sHsps and the large variability of sHsp oligomers enable sHsps to fulfill diverse tasks in the PQC network. sHsp oligomers represent inactive yet dynamic resting states that are rapidly deoligomerized and activated upon stress conditions, releasing substrate binding sites in NTEs and ACDs Bound substrates are usually isolated in large sHsp/substrate complexes. This sequestration activity of sHsps represents a third strategy of the proteostasis network. Substrate sequestration reduces the burden for other PQC components during immediate and persistent stress conditions. Sequestered substrates can be released and directed towards refolding pathways by ATP-dependent Hsp70/Hsp100 chaperones or sorted for degradation by autophagic pathways. sHsps can also maintain the dynamic state of phase-separated stress granules (SGs), which store mRNA and translation factors, by reducing the accumulation of misfolded proteins inside SGs and preventing unfolding of SG components. This ensures SG disassembly and regain of translational capacity during recovery periods.
000169862 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000169862 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000169862 650_7 $$2Other$$achaperone
000169862 650_7 $$2Other$$aprotein aggregation
000169862 650_7 $$2Other$$aproteostasis
000169862 650_7 $$2Other$$asmall heat shock protein
000169862 650_7 $$2Other$$astress granule
000169862 7001_ $$aMogk, Axel$$b1
000169862 7001_ $$0P:(DE-He78)9d539bc25fa8f4ff093b6f6e10d39476$$aBukau, Bernd$$b2$$eLast author$$udkfz
000169862 773__ $$0PERI:(DE-600)1355192-9$$a10.1016/j.jmb.2021.167157$$gp. 167157 -$$n1$$p167157$$tJournal of molecular biology$$v434$$x0022-2836$$y2022
000169862 909CO $$ooai:inrepo02.dkfz.de:169862$$pVDB
000169862 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9d539bc25fa8f4ff093b6f6e10d39476$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000169862 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000169862 9130_ $$0G:(DE-HGF)POF3-311$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vSignalling pathways, cell and tumor biology$$x0
000169862 9141_ $$y2021
000169862 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000169862 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000169862 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000169862 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-08$$wger
000169862 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MOL BIOL : 2021$$d2022-11-08
000169862 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-08
000169862 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-08
000169862 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-08
000169862 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-08
000169862 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-08
000169862 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-08
000169862 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-08
000169862 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-08
000169862 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MOL BIOL : 2021$$d2022-11-08
000169862 9201_ $$0I:(DE-He78)A250-20160331$$kA250$$lA250 Chaperones and Proteases$$x0
000169862 980__ $$ajournal
000169862 980__ $$aVDB
000169862 980__ $$aI:(DE-He78)A250-20160331
000169862 980__ $$aUNRESTRICTED