001     169862
005     20240229133658.0
024 7 _ |a 10.1016/j.jmb.2021.167157
|2 doi
024 7 _ |a pmid:34271010
|2 pmid
024 7 _ |a 0022-2836
|2 ISSN
024 7 _ |a 1089-8638
|2 ISSN
024 7 _ |a altmetric:109738157
|2 altmetric
037 _ _ |a DKFZ-2021-01596
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Reinle, Kevin
|b 0
245 _ _ |a The diverse functions of small heat shock proteins in the proteostasis network.
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642168606_13476
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:A250# /2022 Jan 15;434(1):167157 / DKFZ-ZMBH Alliance
520 _ _ |a The protein quality control (PQC) system maintains protein homeostasis by counteracting the accumulation of misfolded protein conformers. Substrate degradation and refolding activities executed by ATP-dependent proteases and chaperones constitute major strategies of the proteostasis network. Small heat shock proteins represent ATP-independent chaperones that bind to misfolded proteins, preventing their uncontrolled aggregation. sHsps share the conserved α-crystallin domain (ACD) and gain functional specificity through variable and largely disordered N- and C-terminal extensions (NTE, CTE). They form large, polydisperse oligomers through multiple, weak interactions between NTE/CTEs and ACD dimers. Sequence variations of sHsps and the large variability of sHsp oligomers enable sHsps to fulfill diverse tasks in the PQC network. sHsp oligomers represent inactive yet dynamic resting states that are rapidly deoligomerized and activated upon stress conditions, releasing substrate binding sites in NTEs and ACDs Bound substrates are usually isolated in large sHsp/substrate complexes. This sequestration activity of sHsps represents a third strategy of the proteostasis network. Substrate sequestration reduces the burden for other PQC components during immediate and persistent stress conditions. Sequestered substrates can be released and directed towards refolding pathways by ATP-dependent Hsp70/Hsp100 chaperones or sorted for degradation by autophagic pathways. sHsps can also maintain the dynamic state of phase-separated stress granules (SGs), which store mRNA and translation factors, by reducing the accumulation of misfolded proteins inside SGs and preventing unfolding of SG components. This ensures SG disassembly and regain of translational capacity during recovery periods.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a chaperone
|2 Other
650 _ 7 |a protein aggregation
|2 Other
650 _ 7 |a proteostasis
|2 Other
650 _ 7 |a small heat shock protein
|2 Other
650 _ 7 |a stress granule
|2 Other
700 1 _ |a Mogk, Axel
|b 1
700 1 _ |a Bukau, Bernd
|0 P:(DE-He78)9d539bc25fa8f4ff093b6f6e10d39476
|b 2
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.jmb.2021.167157
|g p. 167157 -
|0 PERI:(DE-600)1355192-9
|n 1
|p 167157
|t Journal of molecular biology
|v 434
|y 2022
|x 0022-2836
909 C O |p VDB
|o oai:inrepo02.dkfz.de:169862
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)9d539bc25fa8f4ff093b6f6e10d39476
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-311
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Signalling pathways, cell and tumor biology
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-08
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MOL BIOL : 2021
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-08
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-08
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MOL BIOL : 2021
|d 2022-11-08
920 1 _ |0 I:(DE-He78)A250-20160331
|k A250
|l A250 Chaperones and Proteases
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A250-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21