001     169963
005     20240229133701.0
024 7 _ |a 10.3390/cancers13143449
|2 doi
024 7 _ |a pmid:34298663
|2 pmid
037 _ _ |a DKFZ-2021-01663
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Carles, Montserrat
|0 0000-0003-2401-8240
|b 0
245 _ _ |a 18F-FMISO-PET Hypoxia Monitoring for Head-and-Neck Cancer Patients: Radiomics Analyses Predict the Outcome of Chemo-Radiotherapy.
260 _ _ |a Basel
|c 2021
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1675085743_20049
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tumor hypoxia is associated with radiation resistance and can be longitudinally monitored by 18F-fluoromisonidazole (18F-FMISO)-PET/CT. Our study aimed at evaluating radiomics dynamics of 18F-FMISO-hypoxia imaging during chemo-radiotherapy (CRT) as predictors for treatment outcome in head-and-neck squamous cell carcinoma (HNSCC) patients. We prospectively recruited 35 HNSCC patients undergoing definitive CRT and longitudinal 18F-FMISO-PET/CT scans at weeks 0, 2 and 5 (W0/W2/W5). Patients were classified based on peritherapeutic variations of the hypoxic sub-volume (HSV) size (increasing/stable/decreasing) and location (geographically-static/geographically-dynamic) by a new objective classification parameter (CP) accounting for spatial overlap. Additionally, 130 radiomic features (RF) were extracted from HSV at W0, and their variations during CRT were quantified by relative deviations (∆RF). Prediction of treatment outcome was considered statistically relevant after being corrected for multiple testing and confirmed for the two 18F-FMISO-PET/CT time-points and for a validation cohort. HSV decreased in 64% of patients at W2 and in 80% at W5. CP distinguished earlier disease progression (geographically-dynamic) from later disease progression (geographically-static) in both time-points and cohorts. The texture feature low grey-level zone emphasis predicted local recurrence with AUCW2 = 0.82 and AUCW5 = 0.81 in initial cohort (N = 25) and AUCW2 = 0.79 and AUCW5 = 0.80 in validation cohort. Radiomics analysis of 18F-FMISO-derived hypoxia dynamics was able to predict outcome of HNSCC patients after CRT.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a 18F-FMISO-PET
|2 Other
650 _ 7 |a head-and-neck squamous cell carcinoma and radiomics
|2 Other
650 _ 7 |a hypoxia
|2 Other
650 _ 7 |a radiotherapy response monitoring
|2 Other
700 1 _ |a Fechter, Tobias
|0 0000-0001-6271-9385
|b 1
700 1 _ |a Grosu, Anca L
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sörensen, Arnd
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Thomann, Benedikt
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Stoian, Raluca
|0 P:(DE-He78)75b4c256a6de824414938cf2aaeff88e
|b 5
700 1 _ |a Wiedenmann, Nicole
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rühle, Alexander
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Zamboglou, Constantinos
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ruf, Juri
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Martí-Bonmatí, Luis
|0 0000-0002-8234-010X
|b 10
700 1 _ |a Baltas, Dimos
|0 0000-0003-4220-9083
|b 11
700 1 _ |a Mix, Michael
|0 0000-0002-9106-2519
|b 12
700 1 _ |a Nicolay, Nils H
|0 P:(DE-HGF)0
|b 13
|e Last author
773 _ _ |a 10.3390/cancers13143449
|g Vol. 13, no. 14, p. 3449 -
|0 PERI:(DE-600)2527080-1
|n 14
|p 3449
|t Cancers
|v 13
|y 2021
|x 2072-6694
909 C O |p VDB
|o oai:inrepo02.dkfz.de:169963
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 0000-0003-2401-8240
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 0000-0001-6271-9385
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)75b4c256a6de824414938cf2aaeff88e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 0000-0003-4220-9083
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 0000-0002-9106-2519
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2021
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCERS : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-04
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-05-04
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CANCERS : 2019
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
920 2 _ |0 I:(DE-He78)E055-20160331
|k E055
|l E055 KKE Molekulare Radioonkologie
|x 0
920 1 _ |0 I:(DE-He78)FR01-20160331
|k FR01
|l DKTK FR zentral
|x 0
920 1 _ |0 I:(DE-He78)E055-20160331
|k E055
|l E055 KKE Molekulare Radioonkologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)FR01-20160331
980 _ _ |a I:(DE-He78)E055-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21